Coverage for pySDC/tutorial/step_3/C_study_collocations.py: 100%
63 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 16:55 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 16:55 +0000
1from pathlib import Path
2import numpy as np
4from pySDC.helpers.stats_helper import get_sorted
5from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI
6from pySDC.implementations.problem_classes.PenningTrap_3D import penningtrap
7from pySDC.implementations.sweeper_classes.boris_2nd_order import boris_2nd_order
8from pySDC.tutorial.step_3.HookClass_Particles import particle_hook
11def main():
12 """
13 A simple test program to show the energy deviation for different quadrature nodes
14 """
15 stats_dict = run_simulation()
17 ediff = dict()
18 Path("data").mkdir(parents=True, exist_ok=True)
19 f = open('data/step_3_C_out.txt', 'w')
20 for cclass, stats in stats_dict.items():
21 # filter and convert/sort statistics by etot and iterations
22 energy = get_sorted(stats, type='etot', sortby='iter')
23 # compare base and final energy
24 base_energy = energy[0][1]
25 final_energy = energy[-1][1]
26 ediff[cclass] = abs(base_energy - final_energy)
27 out = "Energy deviation for %s: %12.8e" % (cclass, ediff[cclass])
28 f.write(out + '\n')
29 print(out)
30 f.close()
32 # set expected differences and check
33 ediff_expect = dict()
34 ediff_expect['RADAU-RIGHT'] = 15
35 ediff_expect['LOBATTO'] = 1e-05
36 ediff_expect['GAUSS'] = 3e-05
37 for k, v in ediff.items():
38 assert v < ediff_expect[k], "ERROR: energy deviated too much, got %s" % ediff[k]
41def run_simulation():
42 """
43 A simple test program to run IMEX SDC for a single time step
44 """
45 # initialize level parameters
46 level_params = dict()
47 level_params['restol'] = 1e-06
48 level_params['dt'] = 1.0 / 16
50 # initialize sweeper parameters
51 sweeper_params = dict()
52 sweeper_params['num_nodes'] = 3
54 # initialize problem parameters
55 problem_params = dict()
56 problem_params['omega_E'] = 4.9
57 problem_params['omega_B'] = 25.0
58 problem_params['u0'] = np.array([[10, 0, 0], [100, 0, 100], [1], [1]], dtype=object)
59 problem_params['nparts'] = 1
60 problem_params['sig'] = 0.1
62 # initialize step parameters
63 step_params = dict()
64 step_params['maxiter'] = 20
66 # initialize controller parameters
67 controller_params = dict()
68 controller_params['hook_class'] = particle_hook # specialized hook class for more statistics and output
69 controller_params['logger_level'] = 30 # reduce verbosity of each run
71 # Fill description dictionary for easy hierarchy creation
72 description = dict()
73 description['problem_class'] = penningtrap
74 description['problem_params'] = problem_params
75 description['sweeper_class'] = boris_2nd_order
76 description['level_params'] = level_params
77 description['step_params'] = step_params
79 # assemble and loop over list of collocation classes
80 quad_types = ['RADAU-RIGHT', 'GAUSS', 'LOBATTO']
81 stats_dict = dict()
82 for qtype in quad_types:
83 sweeper_params['quad_type'] = qtype
84 description['sweeper_params'] = sweeper_params
86 # instantiate the controller (no controller parameters used here)
87 controller = controller_nonMPI(num_procs=1, controller_params=controller_params, description=description)
89 # set time parameters
90 t0 = 0.0
91 Tend = level_params['dt']
93 # get initial values on finest level
94 P = controller.MS[0].levels[0].prob
95 uinit = P.u_init()
97 # call main function to get things done...
98 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend)
100 # gather stats in dictionary, collocation classes being the keys
101 stats_dict[qtype] = stats
103 return stats_dict
106if __name__ == "__main__":
107 main()