Coverage for pySDC/tutorial/step_3/B_adding_statistics.py: 100%
55 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
1import numpy as np
2from pathlib import Path
4from pySDC.helpers.stats_helper import get_sorted
6from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI
7from pySDC.implementations.problem_classes.PenningTrap_3D import penningtrap
8from pySDC.implementations.sweeper_classes.boris_2nd_order import boris_2nd_order
9from pySDC.tutorial.step_3.HookClass_Particles import particle_hook
12def main():
13 """
14 A simple test program to retrieve user-defined statistics from a run
15 """
16 Path("data").mkdir(parents=True, exist_ok=True)
18 err, stats = run_penning_trap_simulation()
20 # filter statistics type (etot)
21 energy = get_sorted(stats, type='etot', sortby='iter')
23 # get base energy and show difference
24 base_energy = energy[0][1]
25 f = open('data/step_3_B_out.txt', 'a')
26 for item in energy:
27 out = 'Total energy and deviation in iteration %2i: %12.10f -- %12.8e' % (
28 item[0],
29 item[1],
30 abs(base_energy - item[1]),
31 )
32 f.write(out + '\n')
33 print(out)
34 f.close()
36 assert abs(base_energy - energy[-1][1]) < 15, 'ERROR: energy deviated too much, got %s' % (
37 base_energy - energy[-1][1]
38 )
39 assert err < 5e-04, "ERROR: solution is not as exact as expected, got %s" % err
42def run_penning_trap_simulation():
43 """
44 A simple test program to run IMEX SDC for a single time step of the penning trap example
45 """
46 # initialize level parameters
47 level_params = dict()
48 level_params['restol'] = 1e-08
49 level_params['dt'] = 1.0 / 16
51 # initialize sweeper parameters
52 sweeper_params = dict()
53 sweeper_params['quad_type'] = 'RADAU-RIGHT'
54 sweeper_params['num_nodes'] = 3
56 # initialize problem parameters for the Penning trap
57 problem_params = dict()
58 problem_params['omega_E'] = 4.9 # E-field frequency
59 problem_params['omega_B'] = 25.0 # B-field frequency
60 problem_params['u0'] = np.array([[10, 0, 0], [100, 0, 100], [1], [1]], dtype=object) # initial center of positions
61 problem_params['nparts'] = 1 # number of particles in the trap
62 problem_params['sig'] = 0.1 # smoothing parameter for the forces
64 # initialize step parameters
65 step_params = dict()
66 step_params['maxiter'] = 20
68 # initialize controller parameters
69 controller_params = dict()
70 controller_params['hook_class'] = particle_hook # specialized hook class for more statistics and output
71 controller_params['log_to_file'] = True
72 controller_params['fname'] = 'data/step_3_B_out.txt'
74 # Fill description dictionary for easy hierarchy creation
75 description = dict()
76 description['problem_class'] = penningtrap
77 description['problem_params'] = problem_params
78 description['sweeper_class'] = boris_2nd_order
79 description['sweeper_params'] = sweeper_params
80 description['level_params'] = level_params
81 description['step_params'] = step_params
83 # instantiate the controller (no controller parameters used here)
84 controller = controller_nonMPI(num_procs=1, controller_params=controller_params, description=description)
86 # set time parameters
87 t0 = 0.0
88 Tend = level_params['dt']
90 # get initial values on finest level
91 P = controller.MS[0].levels[0].prob
92 uinit = P.u_init()
94 # call main function to get things done...
95 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend)
97 # compute error compared to know exact solution for one particle
98 uex = P.u_exact(Tend)
99 err = np.linalg.norm(uex.pos - uend.pos, np.inf) / np.linalg.norm(uex.pos, np.inf)
101 return err, stats
104if __name__ == "__main__":
105 main()