Coverage for pySDC/implementations/problem_classes/LogisticEquation.py: 50%
40 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
1import numpy as np
3from pySDC.core.errors import ProblemError
4from pySDC.core.problem import Problem
5from pySDC.implementations.datatype_classes.mesh import mesh
8# noinspection PyUnusedLocal
9class logistics_equation(Problem):
10 r"""
11 Problem implementing a specific form of the Logistic Differential Equation
13 .. math::
14 \frac{du}{dt} = \lambda u(t)(1-u(t))
16 with :math:`\lambda` a given real coefficient. Its analytical solution is
17 given by
19 .. math::
20 u(t) = u(0) \frac{e^{\lambda t}}{1-u(0)+u(0)e^{\lambda t}}
22 Parameters
23 ----------
24 u0 : float, optional
25 Initial condition.
26 newton_maxiter : int, optional
27 Maximum number of iterations for Newton's method.
28 newton_tol : float, optional
29 Tolerance for Newton's method to terminate.
30 direct : bool, optional
31 Indicates if the problem should be solved directly or not. If False, it will be approximated by Newton.
32 lam : float, optional
33 Problem parameter :math:`\lambda`.
34 stop_at_nan : bool, optional
35 Indicates if the Newton solver stops when nan values arise.
36 """
38 dtype_u = mesh
39 dtype_f = mesh
41 def __init__(self, u0=0.5, newton_maxiter=100, newton_tol=1e-12, direct=True, lam=1, stop_at_nan=True):
42 nvars = 1
44 super().__init__((nvars, None, np.dtype('float64')))
45 self._makeAttributeAndRegister(
46 'u0',
47 'lam',
48 'newton_maxiter',
49 'newton_tol',
50 'direct',
51 'nvars',
52 'stop_at_nan',
53 localVars=locals(),
54 readOnly=True,
55 )
57 def u_exact(self, t):
58 r"""
59 Routine to compute the exact solution at time :math:`t`.
61 Parameters
62 ----------
63 t : float
64 Time of the exact solution.
66 Returns
67 -------
68 me : dtype_u
69 The exact solution.
70 """
72 me = self.dtype_u(self.init)
73 me[:] = self.u0 * np.exp(self.lam * t) / (1 - self.u0 + self.u0 * np.exp(self.lam * t))
74 return me
76 def eval_f(self, u, t):
77 """
78 Routine to compute the right-hand side of the problem.
80 Parameters
81 ----------
82 u : dtype_u
83 Current values of the numerical solution.
84 t : float
85 Current time of the numerical solution is computed.
87 Returns
88 -------
89 f : dtype_f
90 The right-hand side of the problem (contains one component).
91 """
93 f = self.dtype_f(self.init)
94 f[:] = self.lam * u * (1 - u)
95 return f
97 def solve_system(self, rhs, dt, u0, t):
98 """
99 Simple Newton solver for the nonlinear equation.
101 Parameters
102 ----------
103 rhs : dtype_f)
104 Right-hand side for the nonlinear system.
105 dt : float
106 Abbrev. for the node-to-node stepsize (or any other factor required).
107 u0 : dtype_u
108 Initial guess for the iterative solver.
109 t : float
110 Current time (e.g. for time-dependent BCs).
112 Returns
113 -------
114 u : dtype_u
115 The solution as mesh.
116 """
117 # create new mesh object from u0 and set initial values for iteration
118 u = self.dtype_u(u0)
120 if self.direct:
121 d = (1 - dt * self.lam) ** 2 + 4 * dt * self.lam * rhs
122 u = (-(1 - dt * self.lam) + np.sqrt(d)) / (2 * dt * self.lam)
123 return u
125 else:
126 # start newton iteration
127 n = 0
128 res = 99
129 while n < self.newton_maxiter:
130 # form the function g with g(u) = 0
131 g = u - dt * self.lam * u * (1 - u) - rhs
133 # if g is close to 0, then we are done
134 res = np.linalg.norm(g, np.inf)
135 if res < self.newton_tol or np.isnan(res):
136 break
138 # assemble dg/du
139 dg = 1 - dt * self.lam * (1 - 2 * u)
140 # newton update: u1 = u0 - g/dg
141 u -= 1.0 / dg * g
143 # increase iteration count
144 n += 1
146 if np.isnan(res) and self.stop_at_nan:
147 raise ProblemError('Newton got nan after %i iterations, aborting...' % n)
148 elif np.isnan(res):
149 self.logger.warning('Newton got nan after %i iterations...' % n)
151 if n == self.newton_maxiter:
152 raise ProblemError('Newton did not converge after %i iterations, error is %s' % (n, res))
154 return u