Coverage for pySDC/implementations/problem_classes/HenonHeiles.py: 100%
31 statements
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-20 14:51 +0000
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-20 14:51 +0000
1import numpy as np
3from pySDC.core.problem import Problem
4from pySDC.implementations.datatype_classes.particles import particles, acceleration
7# noinspection PyUnusedLocal
8class henon_heiles(Problem):
9 r"""
10 This class implements the second-order Hénon-Heiles system
12 .. math::
13 \frac{d^2 x}{dt^2} = - x - 2 x y,
15 .. math::
16 \frac{d^2 y}{dt} = - y - x^2 + y^2
18 with Hamiltonian
20 .. math::
21 H = 0.5 \left[\left(\frac{d x}{d t}\right)^2 + \left(\frac{d y}{d t}\right)^2\right] + 0.5 \left(x^2 + y^2\right)
22 + x^2 y - \frac{y^3}{3}.
23 """
25 dtype_u = particles
26 dtype_f = acceleration
28 def __init__(self):
29 """Initialization routine"""
30 # invoke super init, passing nparts
31 super().__init__((2, None, np.dtype('float64')))
33 def eval_f(self, u, t):
34 """
35 Routine to compute the right-hand side of the problem.
37 Parameters
38 ----------
39 u : dtype_u
40 Current values of the particles.
41 t : float
42 Current time of the particles is computed (not used here).
44 Returns
45 -------
46 me : dtype_f
47 The right-hand side of the problem.
48 """
49 me = self.dtype_f(self.init)
50 me[0] = -u.pos[0] - 2 * u.pos[0] * u.pos[1]
51 me[1] = -u.pos[1] - u.pos[0] ** 2 + u.pos[1] ** 2
52 return me
54 def u_exact(self, t):
55 r"""
56 Routine to compute the exact/initial trajectory at time :math:`t`.
58 Parameters
59 ----------
60 t : float
61 Time of the exact/initial trajectory.
63 Returns
64 -------
65 me : dtype_u
66 Exact/initial position and velocity.
67 """
68 assert t == 0.0, 'error, u_exact only works for the initial time t0=0'
69 me = self.dtype_u(self.init)
71 q1 = 0.0
72 q2 = 0.2
73 p2 = 0.2
74 U0 = 0.5 * (q1 * q1 + q2 * q2) + q1 * q1 * q2 - q2 * q2 * q2 / 3.0
75 H0 = 0.125
77 me.pos[0] = q1
78 me.pos[1] = q2
79 me.vel[0] = np.sqrt(2.0 * (H0 - U0) - p2 * p2)
80 me.vel[1] = p2
81 return me
83 def eval_hamiltonian(self, u):
84 """
85 Routine to compute the Hamiltonian.
87 Parameters
88 ----------
89 u : dtype_u
90 Current values of The particles.
92 Returns
93 -------
94 ham : float
95 The Hamiltonian.
96 """
98 ham = 0.5 * (u.vel[0] ** 2 + u.vel[1] ** 2)
99 ham += 0.5 * (u.pos[0] ** 2 + u.pos[1] ** 2)
100 ham += u.pos[0] ** 2 * u.pos[1] - u.pos[1] ** 3 / 3.0
101 return ham