Coverage for pySDC/implementations/problem_classes/HarmonicOscillator.py: 69%
54 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
1import numpy as np
3from pySDC.core.errors import ParameterError
4from pySDC.core.problem import Problem
5from pySDC.implementations.datatype_classes.particles import particles, acceleration
8# noinspection PyUnusedLocal
9class harmonic_oscillator(Problem):
10 r"""
11 Example implementing the harmonic oscillator with mass :math:`1`
13 .. math::
14 \frac{d^2 x}{dt^2} = -kx - \mu \frac{d x}{dt},
16 which is a second-order problem. The unknown function :math:`x` denotes the position of the mass, and the
17 derivative is the velocity. :math:`\mu` defines the damping and :math:`k` is the spring constant.
19 Parameters
20 ----------
21 k : float, optional
22 Spring constant :math:`k`.
23 mu : float, optional
24 Damping parameter :math:`\mu`.
25 u0 : tuple, optional
26 Initial condition for the position, and the velocity. Should be a tuple, e.g. ``u0=(1, 0)``.
27 phase : float, optional
28 Phase of the oscillation.
29 amp : float, optional
30 Amplitude of the oscillation.
31 Source: https://beltoforion.de/en/harmonic_oscillator/
32 """
34 dtype_u = particles
35 dtype_f = acceleration
37 def __init__(self, k=1.0, mu=0.0, u0=(1, 0), phase=0.0, amp=1.0):
38 """Initialization routine"""
39 # invoke super init, passing nparts, dtype_u and dtype_f
40 u0 = np.asarray(u0)
41 super().__init__((1, None, np.dtype("float64")))
42 self._makeAttributeAndRegister('k', 'mu', 'u0', 'phase', 'amp', localVars=locals(), readOnly=True)
44 def eval_f(self, u, t):
45 """
46 Routine to compute the right-hand side of the problem.
48 Parameters
49 ----------
50 u : dtype_u
51 Current values of the particles.
52 t : float
53 Current time of the numerical solution is computed (not used here).
55 Returns
56 -------
57 me : dtype_f
58 The right-hand side of the problem.
59 """
60 me = self.dtype_f(self.init)
61 me[:] = -self.k * u.pos - self.mu * u.vel
62 return me
64 def u_init(self):
65 """
66 Helper function to compute the initial condition for u.
67 """
68 u0 = self.u0
70 u = self.dtype_u(self.init)
72 u.pos[0] = u0[0]
73 u.vel[0] = u0[1]
75 return u
77 def u_exact(self, t):
78 r"""
79 Routine to compute the exact trajectory at time :math:`t`.
81 Parameters
82 ----------
83 t : float
84 Time of the exact trajectory.
86 Returns
87 -------
88 me : dtype_u
89 Exact position and velocity.
90 """
91 me = self.dtype_u(self.init)
92 delta = self.mu / (2)
93 omega = np.sqrt(self.k)
95 U_0 = self.u0
96 alpha = np.sqrt(np.abs(delta**2 - omega**2))
97 print(self.mu)
98 if delta > omega:
99 """
100 Overdamped case
101 """
103 lam_1 = -delta + alpha
104 lam_2 = -delta - alpha
105 L = np.array([[1, 1], [lam_1, lam_2]])
106 A, B = np.linalg.solve(L, U_0)
107 me.pos[:] = A * np.exp(lam_1 * t) + B * np.exp(lam_2 * t)
108 me.vel[:] = A * lam_1 * np.exp(lam_1 * t) + B * lam_2 * np.exp(lam_2 * t)
110 elif delta == omega:
111 """
112 Critically damped case
113 """
115 A = U_0[0]
116 B = U_0[1] + delta * A
117 me.pos[:] = np.exp(-delta * t) * (A + t * B)
118 me.vel[:] = -delta * me.pos[:] + np.exp(-delta * t) * B
120 elif delta < omega:
121 """
122 Underdamped case
123 """
125 lam_1 = -delta + alpha * 1j
126 lam_2 = -delta - alpha * 1j
128 M = np.array([[1, 1], [lam_1, lam_2]], dtype=complex)
129 A, B = np.linalg.solve(M, U_0)
131 me.pos[:] = np.real(A * np.exp(lam_1 * t) + B * np.exp(lam_2 * t))
132 me.vel[:] = np.real(A * lam_1 * np.exp(lam_1 * t) + B * lam_2 * np.exp(lam_2 * t))
134 else:
135 pass
136 raise ParameterError("Exact solution is not working")
137 return me
139 def eval_hamiltonian(self, u):
140 """
141 Routine to compute the Hamiltonian.
143 Parameters
144 ----------
145 u : dtype_u
146 Current values of the particles.
148 Returns
149 -------
150 ham : float
151 The Hamiltonian.
152 """
154 ham = 0.5 * self.k * u.pos[0] ** 2 + 0.5 * u.vel[0] ** 2
155 return ham