Coverage for pySDC/implementations/problem_classes/GrayScott_MPIFFT.py: 93%
291 statements
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-20 14:51 +0000
« prev ^ index » next coverage.py v7.6.9, created at 2024-12-20 14:51 +0000
1import scipy.sparse as sp
3from pySDC.core.errors import ProblemError
4from pySDC.core.problem import WorkCounter
5from pySDC.implementations.datatype_classes.mesh import comp2_mesh
6from pySDC.implementations.problem_classes.generic_MPIFFT_Laplacian import IMEX_Laplacian_MPIFFT
8from mpi4py_fft import newDistArray
11class grayscott_imex_diffusion(IMEX_Laplacian_MPIFFT):
12 r"""
13 The Gray-Scott system [1]_ describes a reaction-diffusion process of two substances :math:`u` and :math:`v`,
14 where they diffuse over time. During the reaction :math:`u` is used up with overall decay rate :math:`B`,
15 whereas :math:`v` is produced with feed rate :math:`A`. :math:`D_u,\, D_v` are the diffusion rates for
16 :math:`u,\, v`. Here, the process is described by the :math:`N`-dimensional model
18 .. math::
19 \frac{\partial u}{\partial t} = D_u \Delta u - u v^2 + A (1 - u),
21 .. math::
22 \frac{\partial v}{\partial t} = D_v \Delta v + u v^2 - B u
24 in :math:`x \in \Omega:=[-L/2, L/2]^N` with :math:`N=2,3`. Spatial discretization is done by using
25 Fast Fourier transformation for solving the linear parts provided by ``mpi4py-fft`` [2]_, see also
26 https://mpi4py-fft.readthedocs.io/en/latest/.
28 This class implements the problem for *semi-explicit* time-stepping (diffusion is treated implicitly, and reaction
29 is computed in explicit fashion).
31 Parameters
32 ----------
33 nvars : tuple of int, optional
34 Spatial resolution, i.e., number of degrees of freedom in space. Should be a tuple, e.g. ``nvars=(127, 127)``.
35 Du : float, optional
36 Diffusion rate for :math:`u`.
37 Dv: float, optional
38 Diffusion rate for :math:`v`.
39 A : float, optional
40 Feed rate for :math:`v`.
41 B : float, optional
42 Overall decay rate for :math:`u`.
43 spectral : bool, optional
44 If True, the solution is computed in spectral space.
45 L : int, optional
46 Denotes the period of the function to be approximated for the Fourier transform.
47 comm : COMM_WORLD, optional
48 Communicator for ``mpi4py-fft``.
49 num_blobs : int, optional
50 Number of blobs in the initial conditions. Negative values give rectangles.
52 Attributes
53 ----------
54 fft : PFFT
55 Object for parallel FFT transforms.
56 X : mesh-grid
57 Grid coordinates in real space.
58 ndim : int
59 Number of spatial dimensions.
60 Ku : matrix
61 Laplace operator in spectral space (u component).
62 Kv : matrix
63 Laplace operator in spectral space (v component).
65 References
66 ----------
67 .. [1] Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms
68 of multistability. P. Gray, S. K. Scott. Chem. Eng. Sci. 38, 1 (1983).
69 .. [2] Lisandro Dalcin, Mikael Mortensen, David E. Keyes. Fast parallel multidimensional FFT using advanced MPI.
70 Journal of Parallel and Distributed Computing (2019).
71 .. [3] https://www.chebfun.org/examples/pde/GrayScott.html
72 """
74 def __init__(
75 self,
76 Du=1.0,
77 Dv=0.01,
78 A=0.09,
79 B=0.086,
80 L=2.0,
81 num_blobs=1,
82 **kwargs,
83 ):
84 super().__init__(dtype='d', alpha=1.0, x0=-L / 2.0, L=L, **kwargs)
86 # prepare the array with two components
87 shape = (2,) + (self.init[0])
88 self.iU = 0
89 self.iV = 1
90 self.ncomp = 2 # needed for transfer class
92 self.init = (shape, self.comm, self.xp.dtype('complex') if self.spectral else self.xp.dtype('float'))
94 self._makeAttributeAndRegister(
95 'Du',
96 'Dv',
97 'A',
98 'B',
99 'num_blobs',
100 localVars=locals(),
101 readOnly=True,
102 )
104 # prepare "Laplacians"
105 self.Ku = -self.Du * self.K2
106 self.Kv = -self.Dv * self.K2
108 def eval_f(self, u, t):
109 """
110 Routine to evaluate the right-hand side of the problem.
112 Parameters
113 ----------
114 u : dtype_u
115 Current values of the numerical solution.
116 t : float
117 Current time of the numerical solution is computed.
119 Returns
120 -------
121 f : dtype_f
122 The right-hand side of the problem.
123 """
125 f = self.dtype_f(self.init)
127 if self.spectral:
128 f.impl[0, ...] = self.Ku * u[0, ...]
129 f.impl[1, ...] = self.Kv * u[1, ...]
130 tmpu = newDistArray(self.fft, False)
131 tmpv = newDistArray(self.fft, False)
132 tmpu[:] = self.fft.backward(u[0, ...], tmpu)
133 tmpv[:] = self.fft.backward(u[1, ...], tmpv)
134 tmpfu = -tmpu * tmpv**2 + self.A * (1 - tmpu)
135 tmpfv = tmpu * tmpv**2 - self.B * tmpv
136 f.expl[0, ...] = self.fft.forward(tmpfu)
137 f.expl[1, ...] = self.fft.forward(tmpfv)
139 else:
140 u_hat = self.fft.forward(u[0, ...])
141 lap_u_hat = self.Ku * u_hat
142 f.impl[0, ...] = self.fft.backward(lap_u_hat, f.impl[0, ...])
143 u_hat = self.fft.forward(u[1, ...])
144 lap_u_hat = self.Kv * u_hat
145 f.impl[1, ...] = self.fft.backward(lap_u_hat, f.impl[1, ...])
146 f.expl[0, ...] = -u[0, ...] * u[1, ...] ** 2 + self.A * (1 - u[0, ...])
147 f.expl[1, ...] = u[0, ...] * u[1, ...] ** 2 - self.B * u[1, ...]
149 self.work_counters['rhs']()
150 return f
152 def solve_system(self, rhs, factor, u0, t):
153 """
154 Simple FFT solver for the diffusion part.
156 Parameters
157 ----------
158 rhs : dtype_f
159 Right-hand side for the linear system.
160 factor : float
161 Abbrev. for the node-to-node stepsize (or any other factor required).
162 u0 : dtype_u
163 Initial guess for the iterative solver (not used here so far).
164 t : float
165 Current time (e.g. for time-dependent BCs).
167 Returns
168 -------
169 me : dtype_u
170 Solution.
171 """
173 me = self.dtype_u(self.init)
174 if self.spectral:
175 me[0, ...] = rhs[0, ...] / (1.0 - factor * self.Ku)
176 me[1, ...] = rhs[1, ...] / (1.0 - factor * self.Kv)
178 else:
179 rhs_hat = self.fft.forward(rhs[0, ...])
180 rhs_hat /= 1.0 - factor * self.Ku
181 me[0, ...] = self.fft.backward(rhs_hat, me[0, ...])
182 rhs_hat = self.fft.forward(rhs[1, ...])
183 rhs_hat /= 1.0 - factor * self.Kv
184 me[1, ...] = self.fft.backward(rhs_hat, me[1, ...])
186 return me
188 def u_exact(self, t, seed=10700000):
189 r"""
190 Routine to compute the exact solution at time :math:`t = 0`, see [3]_.
192 Parameters
193 ----------
194 t : float
195 Time of the exact solution.
197 Returns
198 -------
199 me : dtype_u
200 Exact solution.
201 """
202 assert t == 0.0, 'Exact solution only valid as initial condition'
204 xp = self.xp
206 _u = xp.zeros_like(self.X[0])
207 _v = xp.zeros_like(self.X[0])
209 rng = xp.random.default_rng(seed)
211 if self.num_blobs < 0:
212 """
213 Rectangles with stationary background, see arXiv:1501.01990
214 """
215 F, k = self.A, self.B - self.A
216 A = xp.sqrt(F) / (F + k)
218 # set stable background state from Equation 2
219 assert 2 * k < xp.sqrt(F) - 2 * F, 'Kill rate is too large to facilitate stable background'
220 _u[...] = (A - xp.sqrt(A**2 - 4)) / (2 * A)
221 _v[...] = xp.sqrt(F) * (A + xp.sqrt(A**2 - 4)) / 2
223 for _ in range(-self.num_blobs):
224 x0 = rng.random(size=self.ndim) * self.L[0] - self.L[0] / 2
225 l = rng.random(size=self.ndim) * self.L[0] / self.nvars[0] * 30
227 masks = [xp.logical_and(self.X[i] > x0[i], self.X[i] < x0[i] + l[i]) for i in range(self.ndim)]
228 mask = masks[0]
229 for m in masks[1:]:
230 mask = xp.logical_and(mask, m)
232 _u[mask] = rng.random()
233 _v[mask] = rng.random()
235 elif self.num_blobs > 0:
236 """
237 Blobs as in https://www.chebfun.org/examples/pde/GrayScott.html
238 """
239 assert self.ndim == 2, 'The initial conditions are 2D for now..'
241 inc = self.L[0] / (self.num_blobs + 1)
243 for i in range(1, self.num_blobs + 1):
244 for j in range(1, self.num_blobs + 1):
245 signs = (-1) ** rng.integers(low=0, high=2, size=2)
247 # This assumes that the box is [-L/2, L/2]^2
248 _u[...] += -xp.exp(
249 -80.0
250 * (
251 (self.X[0] + self.x0 + inc * i + signs[0] * 0.05) ** 2
252 + (self.X[1] + self.x0 + inc * j + signs[1] * 0.02) ** 2
253 )
254 )
255 _v[...] += xp.exp(
256 -80.0
257 * (
258 (self.X[0] + self.x0 + inc * i - signs[0] * 0.05) ** 2
259 + (self.X[1] + self.x0 + inc * j - signs[1] * 0.02) ** 2
260 )
261 )
263 _u += 1
264 else:
265 raise NotImplementedError
267 u = self.u_init
268 if self.spectral:
269 u[0, ...] = self.fft.forward(_u)
270 u[1, ...] = self.fft.forward(_v)
271 else:
272 u[0, ...] = _u
273 u[1, ...] = _v
275 return u
277 def get_fig(self, n_comps=2): # pragma: no cover
278 """
279 Get a figure suitable to plot the solution of this problem
281 Args:
282 n_comps (int): Number of components that fit in the solution
284 Returns
285 -------
286 self.fig : matplotlib.pyplot.figure.Figure
287 """
288 import matplotlib.pyplot as plt
289 from mpl_toolkits.axes_grid1 import make_axes_locatable
291 plt.rcParams['figure.constrained_layout.use'] = True
293 if n_comps == 2:
294 self.fig, axs = plt.subplots(1, 2, sharex=True, sharey=True, figsize=((6, 3)))
295 divider = make_axes_locatable(axs[1])
296 self.cax = divider.append_axes('right', size='3%', pad=0.03)
297 else:
298 self.fig, ax = plt.subplots(1, 1, figsize=((6, 5)))
299 divider = make_axes_locatable(ax)
300 self.cax = divider.append_axes('right', size='3%', pad=0.03)
301 return self.fig
303 def plot(self, u, t=None, fig=None): # pragma: no cover
304 r"""
305 Plot the solution. Please supply a figure with the same structure as returned by ``self.get_fig``.
307 Parameters
308 ----------
309 u : dtype_u
310 Solution to be plotted
311 t : float
312 Time to display at the top of the figure
313 fig : matplotlib.pyplot.figure.Figure
314 Figure with the correct structure
316 Returns
317 -------
318 None
319 """
320 fig = self.get_fig(n_comps=2) if fig is None else fig
321 axs = fig.axes
323 vmin = u.min()
324 vmax = u.max()
325 for i, label in zip([self.iU, self.iV], [r'$u$', r'$v$']):
326 im = axs[i].pcolormesh(self.X[0], self.X[1], u[i], vmin=vmin, vmax=vmax)
327 axs[i].set_aspect(1)
328 axs[i].set_title(label)
330 if t is not None:
331 fig.suptitle(f't = {t:.2e}')
332 axs[0].set_xlabel(r'$x$')
333 axs[0].set_ylabel(r'$y$')
334 fig.colorbar(im, self.cax)
337class grayscott_imex_linear(grayscott_imex_diffusion):
338 r"""
339 The Gray-Scott system [1]_ describes a reaction-diffusion process of two substances :math:`u` and :math:`v`,
340 where they diffuse over time. During the reaction :math:`u` is used up with overall decay rate :math:`B`,
341 whereas :math:`v` is produced with feed rate :math:`A`. :math:`D_u,\, D_v` are the diffusion rates for
342 :math:`u,\, v`. The model with linear (reaction) part is described by the :math:`N`-dimensional model
344 .. math::
345 \frac{d u}{d t} = D_u \Delta u - u v^2 + A,
347 .. math::
348 \frac{d v}{d t} = D_v \Delta v + u v^2
350 in :math:`x \in \Omega:=[-L/2, L/2]^N` with :math:`N=2,3`. Spatial discretization is done by using
351 Fast Fourier transformation for solving the linear parts provided by ``mpi4py-fft`` [2]_, see also
352 https://mpi4py-fft.readthedocs.io/en/latest/.
354 This class implements the problem for *semi-explicit* time-stepping (diffusion is treated implicitly, and linear
355 part is computed in an explicit way).
356 """
358 def __init__(self, **kwargs):
359 super().__init__(**kwargs)
360 self.Ku -= self.A
361 self.Kv -= self.B
363 def eval_f(self, u, t):
364 """
365 Routine to evaluate the right-hand side of the problem.
367 Parameters
368 ----------
369 u : dtype_u
370 Current values of the numerical solution.
371 t : float
372 Current time of the numerical solution is computed.
374 Returns
375 -------
376 f : dtype_f
377 The right-hand side of the problem.
378 """
380 f = self.dtype_f(self.init)
382 if self.spectral:
383 f.impl[0, ...] = self.Ku * u[0, ...]
384 f.impl[1, ...] = self.Kv * u[1, ...]
385 tmpu = newDistArray(self.fft, False)
386 tmpv = newDistArray(self.fft, False)
387 tmpu[:] = self.fft.backward(u[0, ...], tmpu)
388 tmpv[:] = self.fft.backward(u[1, ...], tmpv)
389 tmpfu = -tmpu * tmpv**2 + self.A
390 tmpfv = tmpu * tmpv**2
391 f.expl[0, ...] = self.fft.forward(tmpfu)
392 f.expl[1, ...] = self.fft.forward(tmpfv)
394 else:
395 u_hat = self.fft.forward(u[0, ...])
396 lap_u_hat = self.Ku * u_hat
397 f.impl[0, ...] = self.fft.backward(lap_u_hat, f.impl[0, ...])
398 u_hat = self.fft.forward(u[1, ...])
399 lap_u_hat = self.Kv * u_hat
400 f.impl[1, ...] = self.fft.backward(lap_u_hat, f.impl[1, ...])
401 f.expl[0, ...] = -u[0, ...] * u[1, ...] ** 2 + self.A
402 f.expl[1, ...] = u[0, ...] * u[1, ...] ** 2
404 self.work_counters['rhs']()
405 return f
408class grayscott_mi_diffusion(grayscott_imex_diffusion):
409 r"""
410 The Gray-Scott system [1]_ describes a reaction-diffusion process of two substances :math:`u` and :math:`v`,
411 where they diffuse over time. During the reaction :math:`u` is used up with overall decay rate :math:`B`,
412 whereas :math:`v` is produced with feed rate :math:`A`. :math:`D_u,\, D_v` are the diffusion rates for
413 :math:`u,\, v`. Here, the process is described by the :math:`N`-dimensional model
415 .. math::
416 \frac{\partial u}{\partial t} = D_u \Delta u - u v^2 + A (1 - u),
418 .. math::
419 \frac{\partial v}{\partial t} = D_v \Delta v + u v^2 - B u
421 in :math:`x \in \Omega:=[-L/2, L/2]^N` with :math:`N=2,3`. Spatial discretization is done by using
422 Fast Fourier transformation for solving the linear parts provided by ``mpi4py-fft`` [2]_, see also
423 https://mpi4py-fft.readthedocs.io/en/latest/.
425 This class implements the problem for *multi-implicit* time-stepping, i.e., both diffusion and reaction part will be treated
426 implicitly.
428 Parameters
429 ----------
430 nvars : tuple of int, optional
431 Spatial resolution, i.e., number of degrees of freedom in space. Should be a tuple, e.g. ``nvars=(127, 127)``.
432 Du : float, optional
433 Diffusion rate for :math:`u`.
434 Dv: float, optional
435 Diffusion rate for :math:`v`.
436 A : float, optional
437 Feed rate for :math:`v`.
438 B : float, optional
439 Overall decay rate for :math:`u`.
440 spectral : bool, optional
441 If True, the solution is computed in spectral space.
442 L : int, optional
443 Denotes the period of the function to be approximated for the Fourier transform.
444 comm : COMM_WORLD, optional
445 Communicator for ``mpi4py-fft``.
447 Attributes
448 ----------
449 fft : PFFT
450 Object for parallel FFT transforms.
451 X : mesh-grid
452 Grid coordinates in real space.
453 ndim : int
454 Number of spatial dimensions.
455 Ku : matrix
456 Laplace operator in spectral space (u component).
457 Kv : matrix
458 Laplace operator in spectral space (v component).
460 References
461 ----------
462 .. [1] Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms
463 of multistability. P. Gray, S. K. Scott. Chem. Eng. Sci. 38, 1 (1983).
464 .. [2] Lisandro Dalcin, Mikael Mortensen, David E. Keyes. Fast parallel multidimensional FFT using advanced MPI.
465 Journal of Parallel and Distributed Computing (2019).
466 """
468 dtype_f = comp2_mesh
470 def __init__(
471 self,
472 newton_maxiter=100,
473 newton_tol=1e-12,
474 **kwargs,
475 ):
476 """Initialization routine"""
477 super().__init__(**kwargs)
478 # This may not run in parallel yet..
479 assert self.comm.Get_size() == 1
480 self.work_counters['newton'] = WorkCounter()
481 self.Ku = -self.Du * self.K2
482 self.Kv = -self.Dv * self.K2
483 self._makeAttributeAndRegister('newton_maxiter', 'newton_tol', localVars=locals(), readOnly=False)
485 def eval_f(self, u, t):
486 """
487 Routine to evaluate the right-hand side of the problem.
489 Parameters
490 ----------
491 u : dtype_u
492 Current values of the numerical solution.
493 t : float
494 Current time of the numerical solution is computed.
496 Returns
497 -------
498 f : dtype_f
499 The right-hand side of the problem.
500 """
502 f = self.dtype_f(self.init)
504 if self.spectral:
505 f.comp1[0, ...] = self.Ku * u[0, ...]
506 f.comp1[1, ...] = self.Kv * u[1, ...]
507 tmpu = newDistArray(self.fft, False)
508 tmpv = newDistArray(self.fft, False)
509 tmpu[:] = self.fft.backward(u[0, ...], tmpu)
510 tmpv[:] = self.fft.backward(u[1, ...], tmpv)
511 tmpfu = -tmpu * tmpv**2 + self.A * (1 - tmpu)
512 tmpfv = tmpu * tmpv**2 - self.B * tmpv
513 f.comp2[0, ...] = self.fft.forward(tmpfu)
514 f.comp2[1, ...] = self.fft.forward(tmpfv)
516 else:
517 u_hat = self.fft.forward(u[0, ...])
518 lap_u_hat = self.Ku * u_hat
519 f.comp1[0, ...] = self.fft.backward(lap_u_hat, f.comp1[0, ...])
520 u_hat = self.fft.forward(u[1, ...])
521 lap_u_hat = self.Kv * u_hat
522 f.comp1[1, ...] = self.fft.backward(lap_u_hat, f.comp1[1, ...])
523 f.comp2[0, ...] = -u[0, ...] * u[1, ...] ** 2 + self.A * (1 - u[0, ...])
524 f.comp2[1, ...] = u[0, ...] * u[1, ...] ** 2 - self.B * u[1, ...]
526 self.work_counters['rhs']()
527 return f
529 def solve_system_1(self, rhs, factor, u0, t):
530 """
531 Solver for the first component, can just call the super function.
533 Parameters
534 ----------
535 rhs : dtype_f
536 Right-hand side for the linear system.
537 factor : float
538 Abbrev. for the node-to-node stepsize (or any other factor required).
539 u0 : dtype_u
540 Initial guess for the iterative solver (not used here so far).
541 t : float
542 Current time (e.g. for time-dependent BCs).
544 Returns
545 -------
546 me : dtype_u
547 The solution as mesh.
548 """
550 me = super().solve_system(rhs, factor, u0, t)
551 return me
553 def solve_system_2(self, rhs, factor, u0, t):
554 """
555 Newton-Solver for the second component.
557 Parameters
558 ----------
559 rhs : dtype_f
560 Right-hand side for the linear system.
561 factor float
562 Abbrev. for the node-to-node stepsize (or any other factor required).
563 u0 : dtype_u
564 Initial guess for the iterative solver (not used here so far).
565 t : float
566 Current time (e.g. for time-dependent BCs).
568 Returns
569 -------
570 me : dtype_u
571 The solution as mesh.
572 """
573 u = self.dtype_u(u0)
575 if self.spectral:
576 tmpu = newDistArray(self.fft, False)
577 tmpv = newDistArray(self.fft, False)
578 tmpu[:] = self.fft.backward(u[0, ...], tmpu)
579 tmpv[:] = self.fft.backward(u[1, ...], tmpv)
580 tmprhsu = newDistArray(self.fft, False)
581 tmprhsv = newDistArray(self.fft, False)
582 tmprhsu[:] = self.fft.backward(rhs[0, ...], tmprhsu)
583 tmprhsv[:] = self.fft.backward(rhs[1, ...], tmprhsv)
585 else:
586 tmpu = u[0, ...]
587 tmpv = u[1, ...]
588 tmprhsu = rhs[0, ...]
589 tmprhsv = rhs[1, ...]
591 # start newton iteration
592 n = 0
593 res = 99
594 while n < self.newton_maxiter:
595 # print(n, res)
596 # form the function g with g(u) = 0
597 tmpgu = tmpu - tmprhsu - factor * (-tmpu * tmpv**2 + self.A * (1 - tmpu))
598 tmpgv = tmpv - tmprhsv - factor * (tmpu * tmpv**2 - self.B * tmpv)
600 # if g is close to 0, then we are done
601 res = max(self.xp.linalg.norm(tmpgu, self.xp.inf), self.xp.linalg.norm(tmpgv, self.xp.inf))
602 if res < self.newton_tol:
603 break
605 # assemble dg
606 dg00 = 1 - factor * (-(tmpv**2) - self.A)
607 dg01 = -factor * (-2 * tmpu * tmpv)
608 dg10 = -factor * (tmpv**2)
609 dg11 = 1 - factor * (2 * tmpu * tmpv - self.B)
611 # interleave and unravel to put into sparse matrix
612 dg00I = self.xp.ravel(self.xp.kron(dg00, self.xp.array([1, 0])))
613 dg01I = self.xp.ravel(self.xp.kron(dg01, self.xp.array([1, 0])))
614 dg10I = self.xp.ravel(self.xp.kron(dg10, self.xp.array([1, 0])))
615 dg11I = self.xp.ravel(self.xp.kron(dg11, self.xp.array([0, 1])))
617 # put into sparse matrix
618 dg = sp.diags(dg00I, offsets=0) + sp.diags(dg11I, offsets=0)
619 dg += sp.diags(dg01I, offsets=1, shape=dg.shape) + sp.diags(dg10I, offsets=-1, shape=dg.shape)
621 # interleave g terms to apply inverse to it
622 g = self.xp.kron(tmpgu.flatten(), self.xp.array([1, 0])) + self.xp.kron(
623 tmpgv.flatten(), self.xp.array([0, 1])
624 )
625 # invert dg matrix
626 b = sp.linalg.spsolve(dg, g)
627 # update real space vectors
628 tmpu[:] -= b[::2].reshape(self.nvars)
629 tmpv[:] -= b[1::2].reshape(self.nvars)
631 # increase iteration count
632 n += 1
633 self.work_counters['newton']()
635 if self.xp.isnan(res) and self.stop_at_nan:
636 raise ProblemError('Newton got nan after %i iterations, aborting...' % n)
637 elif self.xp.isnan(res):
638 self.logger.warning('Newton got nan after %i iterations...' % n)
640 if n == self.newton_maxiter:
641 self.logger.warning('Newton did not converge after %i iterations, error is %s' % (n, res))
643 me = self.dtype_u(self.init)
644 if self.spectral:
645 me[0, ...] = self.fft.forward(tmpu)
646 me[1, ...] = self.fft.forward(tmpv)
647 else:
648 me[0, ...] = tmpu
649 me[1, ...] = tmpv
650 return me
653class grayscott_mi_linear(grayscott_imex_linear):
654 r"""
655 The original Gray-Scott system [1]_ describes a reaction-diffusion process of two substances :math:`u` and :math:`v`,
656 where they diffuse over time. During the reaction :math:`u` is used up with overall decay rate :math:`B`,
657 whereas :math:`v` is produced with feed rate :math:`A`. :math:`D_u,\, D_v` are the diffusion rates for
658 :math:`u,\, v`. The model with linear (reaction) part is described by the :math:`N`-dimensional model
660 .. math::
661 \frac{\partial u}{\partial t} = D_u \Delta u - u v^2 + A,
663 .. math::
664 \frac{\partial v}{\partial t} = D_v \Delta v + u v^2
666 in :math:`x \in \Omega:=[-L/2, L/2]^N` with :math:`N=2,3`. Spatial discretization is done by using
667 Fast Fourier transformation for solving the linear parts provided by ``mpi4py-fft`` [2]_, see also
668 https://mpi4py-fft.readthedocs.io/en/latest/.
670 The problem in this class will be treated in a *multi-implicit* way for time-stepping, i.e., for the system containing
671 the diffusion part will be solved by FFT, and for the linear part a Newton solver is used.
672 """
674 dtype_f = comp2_mesh
676 def __init__(
677 self,
678 newton_maxiter=100,
679 newton_tol=1e-12,
680 **kwargs,
681 ):
682 """Initialization routine"""
683 super().__init__(**kwargs)
684 # This may not run in parallel yet..
685 assert self.comm.Get_size() == 1
686 self.work_counters['newton'] = WorkCounter()
687 self.Ku = -self.Du * self.K2 - self.A
688 self.Kv = -self.Dv * self.K2 - self.B
689 self._makeAttributeAndRegister('newton_maxiter', 'newton_tol', localVars=locals(), readOnly=False)
691 def eval_f(self, u, t):
692 """
693 Routine to evaluate the right-hand side of the problem.
695 Parameters
696 ----------
697 u : dtype_u
698 Current values of the numerical solution.
699 t : float
700 Current time of the numerical solution is computed.
702 Returns
703 -------
704 f : dtype_f
705 The right-hand side of the problem.
706 """
708 f = self.dtype_f(self.init)
710 if self.spectral:
711 f.comp1[0, ...] = self.Ku * u[0, ...]
712 f.comp1[1, ...] = self.Kv * u[1, ...]
713 tmpu = newDistArray(self.fft, False)
714 tmpv = newDistArray(self.fft, False)
715 tmpu[:] = self.fft.backward(u[0, ...], tmpu)
716 tmpv[:] = self.fft.backward(u[1, ...], tmpv)
717 tmpfu = -tmpu * tmpv**2 + self.A
718 tmpfv = tmpu * tmpv**2
719 f.comp2[0, ...] = self.fft.forward(tmpfu)
720 f.comp2[1, ...] = self.fft.forward(tmpfv)
722 else:
723 u_hat = self.fft.forward(u[0, ...])
724 lap_u_hat = self.Ku * u_hat
725 f.comp1[0, ...] = self.fft.backward(lap_u_hat, f.comp1[0, ...])
726 u_hat = self.fft.forward(u[1, ...])
727 lap_u_hat = self.Kv * u_hat
728 f.comp1[1, ...] = self.fft.backward(lap_u_hat, f.comp1[1, ...])
729 f.comp2[0, ...] = -u[0, ...] * u[1, ...] ** 2 + self.A
730 f.comp2[1, ...] = u[0, ...] * u[1, ...] ** 2
732 self.work_counters['rhs']()
733 return f
735 def solve_system_1(self, rhs, factor, u0, t):
736 """
737 Solver for the first component, can just call the super function.
739 Parameters
740 ----------
741 rhs : dtype_f
742 Right-hand side for the linear system.
743 factor : float
744 Abbrev. for the node-to-node stepsize (or any other factor required).
745 u0 : dtype_u
746 Initial guess for the iterative solver (not used here so far).
747 t : float
748 Current time (e.g. for time-dependent BCs).
750 Returns
751 -------
752 me : dtype_u
753 The solution as mesh.
754 """
756 me = super(grayscott_mi_linear, self).solve_system(rhs, factor, u0, t)
757 return me
759 def solve_system_2(self, rhs, factor, u0, t):
760 """
761 Newton-Solver for the second component.
763 Parameters
764 ----------
765 rhs : dtype_f
766 Right-hand side for the linear system.
767 factor : float
768 Abbrev. for the node-to-node stepsize (or any other factor required).
769 u0 : dtype_u
770 Initial guess for the iterative solver (not used here so far).
771 t : float
772 Current time (e.g. for time-dependent BCs).
774 Returns
775 -------
776 u : dtype_u
777 The solution as mesh.
778 """
779 u = self.dtype_u(u0)
781 if self.spectral:
782 tmpu = newDistArray(self.fft, False)
783 tmpv = newDistArray(self.fft, False)
784 tmpu[:] = self.fft.backward(u[0, ...], tmpu)
785 tmpv[:] = self.fft.backward(u[1, ...], tmpv)
786 tmprhsu = newDistArray(self.fft, False)
787 tmprhsv = newDistArray(self.fft, False)
788 tmprhsu[:] = self.fft.backward(rhs[0, ...], tmprhsu)
789 tmprhsv[:] = self.fft.backward(rhs[1, ...], tmprhsv)
791 else:
792 tmpu = u[0, ...]
793 tmpv = u[1, ...]
794 tmprhsu = rhs[0, ...]
795 tmprhsv = rhs[1, ...]
797 # start newton iteration
798 n = 0
799 res = 99
800 while n < self.newton_maxiter:
801 # print(n, res)
802 # form the function g with g(u) = 0
803 tmpgu = tmpu - tmprhsu - factor * (-tmpu * tmpv**2 + self.A)
804 tmpgv = tmpv - tmprhsv - factor * (tmpu * tmpv**2)
806 # if g is close to 0, then we are done
807 res = max(self.xp.linalg.norm(tmpgu, self.xp.inf), self.xp.linalg.norm(tmpgv, self.xp.inf))
808 if res < self.newton_tol:
809 break
811 # assemble dg
812 dg00 = 1 - factor * (-(tmpv**2))
813 dg01 = -factor * (-2 * tmpu * tmpv)
814 dg10 = -factor * (tmpv**2)
815 dg11 = 1 - factor * (2 * tmpu * tmpv)
817 # interleave and unravel to put into sparse matrix
818 dg00I = self.xp.ravel(self.xp.kron(dg00, self.xp.array([1, 0])))
819 dg01I = self.xp.ravel(self.xp.kron(dg01, self.xp.array([1, 0])))
820 dg10I = self.xp.ravel(self.xp.kron(dg10, self.xp.array([1, 0])))
821 dg11I = self.xp.ravel(self.xp.kron(dg11, self.xp.array([0, 1])))
823 # put into sparse matrix
824 dg = sp.diags(dg00I, offsets=0) + sp.diags(dg11I, offsets=0)
825 dg += sp.diags(dg01I, offsets=1, shape=dg.shape) + sp.diags(dg10I, offsets=-1, shape=dg.shape)
827 # interleave g terms to apply inverse to it
828 g = self.xp.kron(tmpgu.flatten(), self.xp.array([1, 0])) + self.xp.kron(
829 tmpgv.flatten(), self.xp.array([0, 1])
830 )
831 # invert dg matrix
832 b = sp.linalg.spsolve(dg, g)
833 # update real-space vectors
834 tmpu[:] -= b[::2].reshape(self.nvars)
835 tmpv[:] -= b[1::2].reshape(self.nvars)
837 # increase iteration count
838 n += 1
839 self.work_counters['newton']()
841 if self.xp.isnan(res) and self.stop_at_nan:
842 raise ProblemError('Newton got nan after %i iterations, aborting...' % n)
843 elif self.xp.isnan(res):
844 self.logger.warning('Newton got nan after %i iterations...' % n)
846 if n == self.newton_maxiter:
847 self.logger.warning('Newton did not converge after %i iterations, error is %s' % (n, res))
849 me = self.dtype_u(self.init)
850 if self.spectral:
851 me[0, ...] = self.fft.forward(tmpu)
852 me[1, ...] = self.fft.forward(tmpv)
853 else:
854 me[0, ...] = tmpu
855 me[1, ...] = tmpv
856 return me