Coverage for pySDC/implementations/problem_classes/Battery.py: 96%
166 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
1import numpy as np
3from pySDC.core.errors import ParameterError, ProblemError
4from pySDC.core.problem import Problem, WorkCounter
5from pySDC.implementations.datatype_classes.mesh import mesh, imex_mesh
8class battery_n_capacitors(Problem):
9 r"""
10 Example implementing the battery drain model with :math:`N` capacitors, where :math:`N` is an arbitrary integer greater than zero.
11 First, the capacitor :math:`C` serves as a battery and provides energy. When the voltage of the capacitor :math:`v_{C_n}` for
12 :math:`n=1,..,N` drops below their reference value :math:`V_{ref,n-1}`, the circuit switches to the next capacitor. If all capacitors
13 has dropped below their reference value, the voltage source :math:`V_s` provides further energy. The problem of simulating the
14 battery draining has :math:`N + 1` different states. Each of this state can be expressed as a nonhomogeneous linear system of
15 ordinary differential equations (ODEs)
17 .. math::
18 \frac{d u(t)}{dt} = A_k u(t) + f_k (t)
20 for :math:`k=1,..,N+1` using an initial condition.
22 Parameters
23 ----------
24 ncapacitors : int, optional
25 Number of capacitors :math:`n_{capacitors}` in the circuit.
26 Vs : float, optional
27 Voltage at the voltage source :math:`V_s`.
28 Rs : float, optional
29 Resistance of the resistor :math:`R_s` at the voltage source.
30 C : np.1darray, optional
31 Capacitances of the capacitors :math:`C_n`.
32 R : float, optional
33 Resistance for the load :math:`R_\ell`.
34 L : float, optional
35 Inductance of inductor :math:`L`.
36 alpha : float, optional
37 Factor greater than zero to describe the storage of the capacitor(s).
38 V_ref : np.1darray, optional
39 Array contains the reference values greater than zero for each capacitor to switch to the next energy source.
41 Attributes
42 ----------
43 A : matrix
44 Coefficients matrix of the linear system of ordinary differential equations (ODEs).
45 switch_A : dict
46 Dictionary that contains the coefficients for the coefficient matrix A.
47 switch_f : dict
48 Dictionary that contains the coefficients of the right-hand side f of the ODE system.
49 t_switch : float
50 Time point of the discrete event found by switch estimation.
51 nswitches : int
52 Number of switches found by switch estimation.
54 Note
55 ----
56 The array containing the capacitances :math:`C_n` and the array containing the reference values :math:`V_{ref, n-1}`
57 for each capacitor must be equal to the number of capacitors :math:`n_{capacitors}`.
58 """
60 dtype_u = mesh
61 dtype_f = imex_mesh
63 def __init__(self, ncapacitors=2, Vs=5.0, Rs=0.5, C=None, R=1.0, L=1.0, alpha=1.2, V_ref=None):
64 """Initialization routine"""
65 n = ncapacitors
66 nvars = n + 1
68 if C is None:
69 if ncapacitors == 1:
70 C = np.array([1.0])
71 elif ncapacitors == 2:
72 C = np.array([1.0, 1.0])
73 else:
74 raise ParameterError(f"No default value for C is set up for ncapacitors={ncapacitors}")
75 else:
76 msgC = "ERROR for capacitance C: C has to be an np.ndarray and/or length of array needs to be equal to number of capacitances"
77 assert all([type(C) == np.ndarray, np.shape(C)[0] == n]), msgC
79 if V_ref is None:
80 if ncapacitors == 1:
81 V_ref = np.array([1.0])
82 elif ncapacitors == 2:
83 V_ref = np.array([1.0, 1.0])
84 else:
85 raise ParameterError(f"No default value for V_ref is set up for ncapacitors={ncapacitors}")
86 else:
87 assertions_V_ref_1 = [
88 type(V_ref) == np.ndarray,
89 np.shape(V_ref)[0] == n,
90 ]
91 msg1 = "ERROR for reference value V_ref: V_ref has to be an np.ndarray and/or length of array needs to be equal to number of capacitances"
92 assert all(assertions_V_ref_1), msg1
94 assertions_V_ref_2 = [
95 (alpha > V_ref[k] for k in range(n)),
96 (V_ref[k] > 0 for k in range(n)),
97 ]
98 msg2 = "ERROR for V_ref: At least one of V_ref is less than zero and/or alpha!"
99 assert all(assertions_V_ref_2), msg2
101 # invoke super init, passing number of dofs, dtype_u and dtype_f
102 super().__init__(init=(nvars, None, np.dtype('float64')))
103 self._makeAttributeAndRegister(
104 'nvars', 'ncapacitors', 'Vs', 'Rs', 'C', 'R', 'L', 'alpha', 'V_ref', localVars=locals(), readOnly=True
105 )
107 self.switch_A, self.switch_f = self.get_problem_dict()
108 self.A = self.switch_A[0]
110 self.t_switch = None
111 self.nswitches = 0
113 def eval_f(self, u, t):
114 r"""
115 Routine to evaluate the right-hand side of the problem. Let :math:`v_k:=v_{C_k}` be the voltage of capacitor :math:`C_k` for :math:`k=1,..,N`
116 with reference value :math:`V_{ref, k-1}`. No switch estimator is used: For :math:`N = 3` there are :math:`N + 1 = 4` different states of the battery:
118 :math:`C_1` supplies energy if:
120 .. math::
121 v_1 > V_{ref,0}, v_2 > V_{ref,1}, v_3 > V_{ref,2},
123 :math:`C_2` supplies energy if:
125 .. math::
126 v_1 \leq V_{ref,0}, v_2 > V_{ref,1}, v_3 > V_{ref,2},
128 :math:`C_3` supplies energy if:
130 .. math::
131 v_1 \leq V_{ref,0}, v_2 \leq V_{ref,1}, v_3 > V_{ref,2},
133 :math:`V_s` supplies energy if:
135 .. math::
136 v_1 \leq V_{ref,0}, v_2 \leq V_{ref,1}, v_3 \leq V_{ref,2}.
138 :math:`max_{index}` is initialized to :math:`-1`. List "switch" contains a True if :math:`v_k \leq V_{ref,k-1}` is satisfied.
139 - Is no True there (i.e., :math:`max_{index}=-1`), we are in the first case.
140 - :math:`max_{index}=k\geq 0` means we are in the :math:`(k+1)`-th case.
141 So, the actual RHS has key :math:`max_{index}`-1 in the dictionary self.switch_f.
142 In case of using the switch estimator, we count the number of switches which illustrates in which case of voltage source we are.
144 Parameters
145 ----------
146 u : dtype_u
147 Current values of the numerical solution.
148 t : float
149 Current time of the numerical solution is computed.
151 Returns
152 -------
153 f : dtype_f
154 The right-hand side of the problem.
155 """
157 f = self.dtype_f(self.init, val=0.0)
158 f.impl[:] = self.A.dot(u)
160 if self.t_switch is not None:
161 f.expl[:] = self.switch_f[self.nswitches]
163 else:
164 # proof all switching conditions and find largest index where it drops below V_ref
165 switch = [True if u[k] <= self.V_ref[k - 1] else False for k in range(1, len(u))]
166 max_index = max([k if switch[k] else -1 for k in range(len(switch))])
168 if max_index == -1:
169 f.expl[:] = self.switch_f[0]
171 else:
172 f.expl[:] = self.switch_f[max_index + 1]
174 return f
176 def solve_system(self, rhs, factor, u0, t):
177 r"""
178 Simple linear solver for :math:`(I-factor\cdot A)\vec{u}=\vec{rhs}`.
180 Parameters
181 ----------
182 rhs : dtype_f
183 Right-hand side for the linear system.
184 factor : float
185 Abbrev. for the local stepsize (or any other factor required).
186 u0 : dtype_u
187 Initial guess for the iterative solver.
188 t : float
189 Current time (e.g. for time-dependent BCs).
191 Returns
192 -------
193 me : dtype_u
194 The solution as mesh.
195 """
197 if self.t_switch is not None:
198 self.A = self.switch_A[self.nswitches]
200 else:
201 # proof all switching conditions and find largest index where it drops below V_ref
202 switch = [True if rhs[k] <= self.V_ref[k - 1] else False for k in range(1, len(rhs))]
203 max_index = max([k if switch[k] else -1 for k in range(len(switch))])
204 if max_index == -1:
205 self.A = self.switch_A[0]
207 else:
208 self.A = self.switch_A[max_index + 1]
210 me = self.dtype_u(self.init)
211 me[:] = np.linalg.solve(np.eye(self.nvars) - factor * self.A, rhs)
212 return me
214 def u_exact(self, t):
215 r"""
216 Routine to compute the exact solution at time :math:`t`.
218 Parameters
219 ----------
220 t : float
221 Time of the exact solution.
223 Returns
224 -------
225 me : dtype_u
226 The exact solution.
227 """
228 assert t == 0, 'ERROR: u_exact only valid for t=0'
230 me = self.dtype_u(self.init)
232 me[0] = 0.0 # cL
233 me[1:] = self.alpha * self.V_ref # vC's
234 return me
236 def get_switching_info(self, u, t):
237 """
238 Provides information about a discrete event for one subinterval.
240 Parameters
241 ----------
242 u : dtype_u
243 Current values of the numerical solution.
244 t : float
245 Current time of the numerical solution is computed.
247 Returns
248 -------
249 switch_detected : bool
250 Indicates if a switch is found or not.
251 m_guess : int
252 Index of collocation node inside one subinterval of where the discrete event was found.
253 state_function : list
254 Contains values of the state function (for interpolation).
255 """
257 switch_detected = False
258 m_guess = -100
259 break_flag = False
260 k_detected = 1
261 for m in range(1, len(u)):
262 for k in range(1, self.nvars):
263 h_prev_node = u[m - 1][k] - self.V_ref[k - 1]
264 h_curr_node = u[m][k] - self.V_ref[k - 1]
265 if h_prev_node > 0 and h_curr_node <= 0:
266 switch_detected = True
267 m_guess = m - 1
268 k_detected = k
269 break_flag = True
270 break
272 if break_flag:
273 break
275 state_function = [u[m][k_detected] - self.V_ref[k_detected - 1] for m in range(len(u))]
277 return switch_detected, m_guess, state_function
279 def count_switches(self):
280 """
281 Counts the number of switches. This function is called when a switch is found inside the range of tolerance
282 (in pySDC/projects/PinTSimE/switch_estimator.py)
283 """
285 self.nswitches += 1
287 def get_problem_dict(self):
288 """
289 Helper to create dictionaries for both the coefficent matrix of the ODE system and the nonhomogeneous part.
290 """
292 n = self.ncapacitors
293 v = np.zeros(n + 1)
294 v[0] = 1
295 A, f = dict(), dict()
296 A = {k: np.diag(-1 / (self.C[k] * self.R) * np.roll(v, k + 1)) for k in range(n)}
297 A.update({n: np.diag(-(self.Rs + self.R) / self.L * v)})
298 f = {k: np.zeros(n + 1) for k in range(n)}
299 f.update({n: self.Vs / self.L * v})
300 return A, f
303class battery(battery_n_capacitors):
304 r"""
305 Example implementing the battery drain model with :math:`N=1` capacitor, inherits from ``battery_n_capacitors``. This model is an example
306 of a discontinuous problem. The state function :math:`decides` which differential equation is solved. When the state function has
307 a sign change the dynamics of the solution changes by changing the differential equation. The ODE system of this model is given by
308 the following equations:
310 If :math:`h(v_1) := v_1 - V_{ref, 0} > 0:`
312 .. math::
313 \frac{d i_L (t)}{dt} = 0,
315 .. math::
316 \frac{d v_1 (t)}{dt} = -\frac{1}{CR}v_1 (t),
318 else:
320 .. math::
321 \frac{d i_L(t)}{dt} = -\frac{R_s + R}{L}i_L (t) + \frac{1}{L} V_s,
323 .. math::
324 \frac{d v_1(t)}{dt} = 0,
326 where :math:`i_L` denotes the function of the current over time :math:`t`.
328 Note
329 ----
330 This class has the same attributes as the class it inherits from.
331 """
333 dtype_f = imex_mesh
335 def __init__(self, ncapacitors=1, Vs=5.0, Rs=0.5, C=None, R=1.0, L=1.0, alpha=1.2, V_ref=None):
336 """Initialization routine"""
337 super().__init__(ncapacitors, Vs, Rs, C, R, L, alpha, V_ref)
339 def eval_f(self, u, t):
340 """
341 Routine to evaluate the right-hand side of the problem.
343 Parameters
344 ----------
345 u : dtype_u
346 Current values of the numerical solution.
347 t : float
348 Current time of the numerical solution is computed.
350 Returns
351 -------
352 f : dtype_f
353 The right-hand side of the problem.
354 """
356 f = self.dtype_f(self.init, val=0.0)
357 f.impl[:] = self.A.dot(u)
359 t_switch = np.inf if self.t_switch is None else self.t_switch
361 if u[1] - self.V_ref[0] <= 0 or t >= t_switch:
362 f.expl[0] = self.Vs / self.L
364 else:
365 f.expl[0] = 0
367 return f
369 def solve_system(self, rhs, factor, u0, t):
370 r"""
371 Simple linear solver for :math:`(I-factor\cdot A)\vec{u}=\vec{rhs}`.
373 Parameters
374 ----------
375 rhs : dtype_f
376 Right-hand side for the linear system.
377 factor : float
378 Abbrev. for the local stepsize (or any other factor required).
379 u0 : dtype_u
380 Initial guess for the iterative solver.
381 t : float
382 Current time (e.g. for time-dependent BCs).
384 Returns
385 -------
386 me : dtype_u
387 The solution as mesh.
388 """
389 self.A = np.zeros((2, 2))
391 t_switch = np.inf if self.t_switch is None else self.t_switch
393 if rhs[1] - self.V_ref[0] <= 0 or t >= t_switch:
394 self.A[0, 0] = -(self.Rs + self.R) / self.L
396 else:
397 self.A[1, 1] = -1 / (self.C[0] * self.R)
399 me = self.dtype_u(self.init)
400 me[:] = np.linalg.solve(np.eye(self.nvars) - factor * self.A, rhs)
401 return me
403 def u_exact(self, t):
404 r"""
405 Routine to compute the exact solution at time :math:`t`.
407 Parameters
408 ----------
409 t : float
410 Time of the exact solution.
412 Returns
413 -------
414 me : dtype_u
415 The exact solution.
416 """
417 assert t == 0, 'ERROR: u_exact only valid for t=0'
419 me = self.dtype_u(self.init)
421 me[0] = 0.0 # cL
422 me[1] = self.alpha * self.V_ref[0] # vC
424 return me
427class battery_implicit(battery):
428 r"""
429 Example implementing the battery drain model as above. The method solve_system uses a fully-implicit computation.
431 Parameters
432 ----------
433 ncapacitors : int, optional
434 Number of capacitors in the circuit.
435 Vs : float, optional
436 Voltage at the voltage source :math:`V_s`.
437 Rs : float, optional
438 Resistance of the resistor :math:`R_s` at the voltage source.
439 C : np.1darray, optional
440 Capacitances of the capacitors. Length of array must equal to number of capacitors.
441 R : float, optional
442 Resistance for the load :math:`R_\ell`.
443 L : float, optional
444 Inductance of inductor :math:`L`.
445 alpha : float, optional
446 Factor greater than zero to describe the storage of the capacitor(s).
447 V_ref : float, optional
448 Reference value greater than zero for the battery to switch to the voltage source.
449 newton_maxiter : int, optional
450 Number of maximum iterations for the Newton solver.
451 newton_tol : float, optional
452 Tolerance for determination of the Newton solver.
454 Attributes
455 ----------
456 work_counters : WorkCounter
457 Counts different things, here: Number of Newton iterations is counted.
458 """
460 dtype_f = mesh
462 def __init__(
463 self,
464 ncapacitors=1,
465 Vs=5.0,
466 Rs=0.5,
467 C=None,
468 R=1.0,
469 L=1.0,
470 alpha=1.2,
471 V_ref=None,
472 newton_maxiter=100,
473 newton_tol=1e-11,
474 ):
475 super().__init__(ncapacitors, Vs, Rs, C, R, L, alpha, V_ref)
476 self._makeAttributeAndRegister('newton_maxiter', 'newton_tol', localVars=locals(), readOnly=True)
478 self.work_counters['newton'] = WorkCounter()
480 def eval_f(self, u, t):
481 """
482 Routine to evaluate the right-hand side of the problem.
484 Parameters
485 ----------
486 u : dtype_u
487 Current values of the numerical solution.
488 t : float
489 Current time of the numerical solution is computed.
491 Returns
492 -------
493 f : dtype_f
494 The right-hand side of the problem.
495 """
497 f = self.dtype_f(self.init, val=0.0)
498 non_f = np.zeros(2)
500 t_switch = np.inf if self.t_switch is None else self.t_switch
502 if u[1] - self.V_ref[0] <= 0 or t >= t_switch:
503 self.A[0, 0] = -(self.Rs + self.R) / self.L
504 non_f[0] = self.Vs
506 else:
507 self.A[1, 1] = -1 / (self.C[0] * self.R)
508 non_f[0] = 0
510 f[:] = self.A.dot(u) + non_f
511 return f
513 def solve_system(self, rhs, factor, u0, t):
514 """
515 Simple Newton solver.
517 Parameters
518 ----------
519 rhs : dtype_f
520 Right-hand side for the nonlinear system.
521 factor : float
522 Abbrev. for the local stepsize (or any other factor required).
523 u0 : dtype_u
524 Initial guess for the iterative solver
525 t : float
526 Current time (e.g. for time-dependent BCs).
528 Returns
529 -------
530 me : dtype_u
531 The solution as mesh.
532 """
534 u = self.dtype_u(u0)
535 non_f = np.zeros(2)
536 self.A = np.zeros((2, 2))
538 t_switch = np.inf if self.t_switch is None else self.t_switch
540 if rhs[1] - self.V_ref[0] <= 0 or t >= t_switch:
541 self.A[0, 0] = -(self.Rs + self.R) / self.L
542 non_f[0] = self.Vs
544 else:
545 self.A[1, 1] = -1 / (self.C[0] * self.R)
546 non_f[0] = 0
548 # start newton iteration
549 n = 0
550 res = 99
551 while n < self.newton_maxiter:
552 # form function g with g(u) = 0
553 g = u - rhs - factor * (self.A.dot(u) + non_f)
555 # if g is close to 0, then we are done
556 res = np.linalg.norm(g, np.inf)
558 if res < self.newton_tol:
559 break
561 # assemble dg
562 dg = np.eye(self.nvars) - factor * self.A
564 # newton update: u1 = u0 - g/dg
565 u -= np.linalg.solve(dg, g)
567 # increase iteration count
568 n += 1
569 self.work_counters['newton']()
571 if np.isnan(res) and self.stop_at_nan:
572 raise ProblemError('Newton got nan after %i iterations, aborting...' % n)
573 elif np.isnan(res):
574 self.logger.warning('Newton got nan after %i iterations...' % n)
576 if n == self.newton_maxiter:
577 self.logger.warning('Newton did not converge after %i iterations, error is %s' % (n, res))
579 me = self.dtype_u(self.init)
580 me[:] = u[:]
582 return me