Coverage for pySDC/implementations/problem_classes/Auzinger_implicit.py: 100%
38 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import numpy as np
3from pySDC.core.problem import Problem
4from pySDC.implementations.datatype_classes.mesh import mesh
7# noinspection PyUnusedLocal
8class auzinger(Problem):
9 r"""
10 This class implements the Auzinger equation [1]_ as initial value problem. The system of two ordinary differential equations
11 (ODEs) is given by
13 .. math::
14 \frac{d y_1 (t)}{dt} = -y_2 (t) + y_1 (t) (1 - y^2_1 (t) - y^2_2 (t)),
16 .. math::
17 \frac{d y_2 (t)}{dt} = y_1 (t) + 3 y_2 (t) (1 - y^2_1 (t) - y^2_2 (t))
19 with initial condition :math:`(y_1(t), y_2(t))^T = (1, 0)^T` for :math:`t \in [0, 10]`. The exact solution of this problem is
21 .. math::
22 (y_1(t), y_2(t))^T = (\cos(t), \sin(t))^T.
24 Attributes
25 ----------
26 newton_maxiter : int, optional
27 Maximum number of iterations for Newton's method.
28 newton_tol : float, optional
29 Tolerance for Newton's method to terminate.
31 References
32 ----------
33 .. [1] doi.org/10.2140/camcos.2015.10.1
34 """
36 dtype_u = mesh
37 dtype_f = mesh
39 def __init__(self, newton_maxiter=1e-12, newton_tol=100):
40 """Initialization routine"""
42 # invoke super init, passing dtype_u and dtype_f, plus setting number of elements to 2
43 super().__init__((2, None, np.dtype('float64')))
44 self._makeAttributeAndRegister('newton_maxiter', 'newton_tol', localVars=locals(), readOnly=True)
46 def u_exact(self, t):
47 r"""
48 Routine to compute the exact solution at time :math:`t`.
50 Parameters
51 ----------
52 t : float
53 Time of the exact solution.
55 Returns
56 -------
57 me : dtype_u
58 The exact solution.
59 """
61 me = self.dtype_u(self.init)
62 me[0] = np.cos(t)
63 me[1] = np.sin(t)
64 return me
66 def eval_f(self, u, t):
67 """
68 Routine to compute the right-hand side of the problem for both components simultaneously.
70 Parameters
71 ----------
72 u : dtype_u
73 Current values of the numerical solution.
74 t : float
75 Current time of the numerical solution is computed (not used here).
77 Returns
78 -------
79 f : dtype_f
80 The right-hand side of the problem (contains two components).
81 """
83 x1 = u[0]
84 x2 = u[1]
85 f = self.dtype_f(self.init)
86 f[0] = -x2 + x1 * (1 - x1**2 - x2**2)
87 f[1] = x1 + 3 * x2 * (1 - x1**2 - x2**2)
88 return f
90 def solve_system(self, rhs, dt, u0, t):
91 """
92 Simple Newton solver for the nonlinear system.
94 Parameters
95 ----------
96 rhs : dtype_f
97 Right-hand side for the nonlinear system.
98 dt : float
99 Abbrev. for the node-to-node stepsize (or any other factor required).
100 u0 : dtype_u
101 Initial guess for the iterative solver.
102 t : float
103 Current time (e.g. for time-dependent BCs.)
105 Returns
106 -------
107 u : dtype_u
108 The solution as mesh.
109 """
111 # create new mesh object from u0 and set initial values for iteration
112 u = self.dtype_u(u0)
113 x1 = u[0]
114 x2 = u[1]
116 # start newton iteration
117 n = 0
118 while n < self.newton_maxiter:
119 # form the function g with g(u) = 0
120 g = np.array(
121 [
122 x1 - dt * (-x2 + x1 * (1 - x1**2 - x2**2)) - rhs[0],
123 x2 - dt * (x1 + 3 * x2 * (1 - x1**2 - x2**2)) - rhs[1],
124 ]
125 )
127 # if g is close to 0, then we are done
128 res = np.linalg.norm(g, np.inf)
130 if res < self.newton_tol:
131 break
133 # assemble dg and invert the matrix (yeah, I know)
134 dg = np.array(
135 [
136 [1 - dt * (1 - 3 * x1**2 - x2**2), -dt * (-1 - 2 * x1 * x2)],
137 [-dt * (1 - 6 * x1 * x2), 1 - dt * (3 - 3 * x1**2 - 9 * x2**2)],
138 ]
139 )
141 idg = np.linalg.inv(dg)
143 # newton update: u1 = u0 - g/dg
144 u -= np.dot(idg, g)
146 # set new values and increase iteration count
147 x1 = u[0]
148 x2 = u[1]
149 n += 1
151 return u
153 # def eval_jacobian(self, u):
154 #
155 # x1 = u[0]
156 # x2 = u[1]
157 #
158 # dfdu = np.array([[1-3*x1**2-x2**2, -1-x1], [1+6*x2*x1, 3+3*x1**2-9*x2**2]])
159 #
160 # return dfdu
161 #
162 #
163 # def solve_system_jacobian(self, dfdu, rhs, factor, u0, t):
164 #
165 # me = mesh(2)
166 # me = LA.spsolve(sp.eye(2) - factor * dfdu, rhs)
167 # return me