Coverage for pySDC/implementations/problem_classes/AllenCahn_MPIFFT.py: 73%
92 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
1import numpy as np
2from mpi4py import MPI
4from pySDC.implementations.problem_classes.generic_MPIFFT_Laplacian import IMEX_Laplacian_MPIFFT
5from mpi4py_fft import newDistArray
8class allencahn_imex(IMEX_Laplacian_MPIFFT):
9 r"""
10 Example implementing the :math:`2`-dimensional Allen-Cahn equation with periodic boundary conditions :math:`u \in [0, 1]^2`
12 .. math::
13 \frac{\partial u}{\partial t} = \Delta u - \frac{2}{\varepsilon^2} u (1 - u) (1 - 2u)
14 - 6 d_w u (1 - u)
16 on a spatial domain :math:`[-\frac{L}{2}, \frac{L}{2}]^2`, driving force :math:`d_w`, and :math:`N=2,3`. Different initial
17 conditions can be used, for example, circles of the form
19 .. math::
20 u({\bf x}, 0) = \tanh\left(\frac{r - \sqrt{(x_i-0.5)^2 + (y_j-0.5)^2}}{\sqrt{2}\varepsilon}\right),
22 for :math:`i, j=0,..,N-1`, where :math:`N` is the number of spatial grid points. For time-stepping, the problem is treated
23 *semi-implicitly*, i.e., the linear part is solved with Fast-Fourier Transform (FFT) and the nonlinear part in the right-hand
24 side will be treated explicitly using ``mpi4py-fft`` [1]_ to solve them.
26 Parameters
27 ----------
28 nvars : List of int tuples, optional
29 Number of unknowns in the problem, e.g. ``nvars=(128, 128)``.
30 eps : float, optional
31 Scaling parameter :math:`\varepsilon`.
32 radius : float, optional
33 Radius of the circles.
34 spectral : bool, optional
35 Indicates if spectral initial condition is used.
36 dw : float, optional
37 Driving force.
38 L : float, optional
39 Denotes the period of the function to be approximated for the Fourier transform.
40 init_type : str, optional
41 Initialises type of initial state.
42 comm : bool, optional
43 Communicator for parallelization.
45 Attributes
46 ----------
47 fft : fft object
48 Object for FFT.
49 X : np.ogrid
50 Grid coordinates in real space.
51 K2 : np.1darray
52 Laplace operator in spectral space.
53 dx : float
54 Mesh width in x direction.
55 dy : float
56 Mesh width in y direction.
58 References
59 ----------
60 .. [1] https://mpi4py-fft.readthedocs.io/en/latest/
61 """
63 def __init__(
64 self,
65 eps=0.04,
66 radius=0.25,
67 dw=0.0,
68 init_type='circle',
69 **kwargs,
70 ):
71 kwargs['L'] = kwargs.get('L', 1.0)
72 super().__init__(alpha=1.0, dtype=np.dtype('float'), **kwargs)
73 self._makeAttributeAndRegister('eps', 'radius', 'dw', 'init_type', localVars=locals(), readOnly=True)
75 def _eval_explicit_part(self, u, t, f_expl):
76 f_expl[:] = -2.0 / self.eps**2 * u * (1.0 - u) * (1.0 - 2.0 * u) - 6.0 * self.dw * u * (1.0 - u)
77 return f_expl
79 def eval_f(self, u, t):
80 """
81 Routine to evaluate the right-hand side of the problem.
83 Parameters
84 ----------
85 u : dtype_u
86 Current values of the numerical solution.
87 t : float
88 Current time of the numerical solution is computed.
90 Returns
91 -------
92 f : dtype_f
93 The right-hand side of the problem.
94 """
96 f = self.dtype_f(self.init)
98 f.impl[:] = self._eval_Laplacian(u, f.impl)
100 if self.spectral:
101 f.impl = -self.K2 * u
103 if self.eps > 0:
104 tmp = self.fft.backward(u)
105 tmp[:] = self._eval_explicit_part(tmp, t, tmp)
106 f.expl[:] = self.fft.forward(tmp)
108 else:
110 if self.eps > 0:
111 f.expl[:] = self._eval_explicit_part(u, t, f.expl)
113 self.work_counters['rhs']()
114 return f
116 def u_exact(self, t, **kwargs):
117 r"""
118 Routine to compute the exact solution at time :math:`t`.
120 Parameters
121 ----------
122 t : float
123 Time of the exact solution.
125 Returns
126 -------
127 me : dtype_u
128 The exact solution.
129 """
131 assert t == 0, 'ERROR: u_exact only valid for t=0'
132 me = self.dtype_u(self.init, val=0.0)
133 if self.init_type == 'circle':
134 r2 = (self.X[0] - 0.5) ** 2 + (self.X[1] - 0.5) ** 2
135 if self.spectral:
136 tmp = 0.5 * (1.0 + self.xp.tanh((self.radius - self.xp.sqrt(r2)) / (np.sqrt(2) * self.eps)))
137 me[:] = self.fft.forward(tmp)
138 else:
139 me[:] = 0.5 * (1.0 + self.xp.tanh((self.radius - self.xp.sqrt(r2)) / (np.sqrt(2) * self.eps)))
140 elif self.init_type == 'circle_rand':
141 ndim = len(me.shape)
142 L = int(self.L[0])
143 # get random radii for circles/spheres
144 self.xp.random.seed(1)
145 lbound = 3.0 * self.eps
146 ubound = 0.5 - self.eps
147 rand_radii = (ubound - lbound) * self.xp.random.random_sample(size=tuple([L] * ndim)) + lbound
148 # distribute circles/spheres
149 tmp = newDistArray(self.fft, False)
150 if ndim == 2:
151 for i in range(0, L):
152 for j in range(0, L):
153 # build radius
154 r2 = (self.X[0] + i - L + 0.5) ** 2 + (self.X[1] + j - L + 0.5) ** 2
155 # add this blob, shifted by 1 to avoid issues with adding up negative contributions
156 tmp += self.xp.tanh((rand_radii[i, j] - self.xp.sqrt(r2)) / (np.sqrt(2) * self.eps)) + 1
157 else:
158 raise NotImplementedError
159 # normalize to [0,1]
160 tmp *= 0.5
161 assert self.xp.all(tmp <= 1.0)
162 if self.spectral:
163 me[:] = self.fft.forward(tmp)
164 else:
165 self.xp.copyto(me, tmp)
166 else:
167 raise NotImplementedError('type of initial value not implemented, got %s' % self.init_type)
169 return me
172class allencahn_imex_timeforcing(allencahn_imex):
173 r"""
174 Example implementing the :math:`N`-dimensional Allen-Cahn equation with periodic boundary conditions :math:`u \in [0, 1]^2`
175 using time-dependent forcing
177 .. math::
178 \frac{\partial u}{\partial t} = \Delta u - \frac{2}{\varepsilon^2} u (1 - u) (1 - 2u)
179 - 6 d_w u (1 - u)
181 on a spatial domain :math:`[-\frac{L}{2}, \frac{L}{2}]^2`, driving force :math:`d_w`, and :math:`N=2,3`. Different initial
182 conditions can be used, for example, circles of the form
184 .. math::
185 u({\bf x}, 0) = \tanh\left(\frac{r - \sqrt{(x_i-0.5)^2 + (y_j-0.5)^2}}{\sqrt{2}\varepsilon}\right),
187 for :math:`i, j=0,..,N-1`, where :math:`N` is the number of spatial grid points. For time-stepping, the problem is treated
188 *semi-implicitly*, i.e., the linear part is solved with Fast-Fourier Transform (FFT) using ``mpi4py-fft`` [1]_ and the nonlinear part in the right-hand
189 side will be treated explicitly.
190 """
192 def eval_f(self, u, t):
193 """
194 Routine to evaluate the right-hand side of the problem.
196 Parameters
197 ----------
198 u : dtype_u
199 Current values of the numerical solution.
200 t : float
201 Current time of the numerical solution is computed.
203 Returns
204 -------
205 f : dtype_f
206 The right-hand side of the problem.
207 """
209 f = self.dtype_f(self.init)
211 f.impl[:] = self._eval_Laplacian(u, f.impl)
213 if self.spectral:
215 tmp = newDistArray(self.fft, False)
216 tmp[:] = self.fft.backward(u, tmp)
218 if self.eps > 0:
219 tmpf = -2.0 / self.eps**2 * tmp * (1.0 - tmp) * (1.0 - 2.0 * tmp)
220 else:
221 tmpf = self.dtype_f(self.init, val=0.0)
223 # build sum over RHS without driving force
224 Rt_local = float(self.xp.sum(self.fft.backward(f.impl) + tmpf))
225 if self.comm is not None:
226 Rt_global = self.comm.allreduce(sendobj=Rt_local, op=MPI.SUM)
227 else:
228 Rt_global = Rt_local
230 # build sum over driving force term
231 Ht_local = float(self.xp.sum(6.0 * tmp * (1.0 - tmp)))
232 if self.comm is not None:
233 Ht_global = self.comm.allreduce(sendobj=Ht_local, op=MPI.SUM)
234 else:
235 Ht_global = Ht_local
237 # add/substract time-dependent driving force
238 if Ht_global != 0.0:
239 dw = Rt_global / Ht_global
240 else:
241 dw = 0.0
243 tmpf -= 6.0 * dw * tmp * (1.0 - tmp)
244 f.expl[:] = self.fft.forward(tmpf)
246 else:
248 if self.eps > 0:
249 f.expl = -2.0 / self.eps**2 * u * (1.0 - u) * (1.0 - 2.0 * u)
251 # build sum over RHS without driving force
252 Rt_local = float(self.xp.sum(f.impl + f.expl))
253 if self.comm is not None:
254 Rt_global = self.comm.allreduce(sendobj=Rt_local, op=MPI.SUM)
255 else:
256 Rt_global = Rt_local
258 # build sum over driving force term
259 Ht_local = float(self.xp.sum(6.0 * u * (1.0 - u)))
260 if self.comm is not None:
261 Ht_global = self.comm.allreduce(sendobj=Ht_local, op=MPI.SUM)
262 else:
263 Ht_global = Ht_local
265 # add/substract time-dependent driving force
266 if Ht_global != 0.0:
267 dw = Rt_global / Ht_global
268 else:
269 dw = 0.0
271 f.expl -= 6.0 * dw * u * (1.0 - u)
273 self.work_counters['rhs']()
274 return f