Coverage for pySDC/implementations/problem_classes/AllenCahn_2D_FFT_gpu.py: 0%
24 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import cupy as cp
2import numpy as np
4from pySDC.core.errors import ProblemError
5from pySDC.core.problem import Problem
6from pySDC.implementations.datatype_classes.cupy_mesh import cupy_mesh, imex_cupy_mesh
9class allencahn2d_imex(Problem): # pragma: no cover
10 r"""
11 Example implementing the two-dimensional Allen-Cahn equation with periodic boundary conditions :math:`u \in [-1, 1]^2`
13 .. math::
14 \frac{\partial u}{\partial t} = \Delta u + \frac{1}{\varepsilon^2} u (1 - u^\nu)
16 on a spatial domain :math:`[-\frac{L}{2}, \frac{L}{2}]^2`, and constant parameter :math:`\nu`. Different initial conditions
17 can be used, for example, circles of the form
19 .. math::
20 u({\bf x}, 0) = \tanh\left(\frac{r - \sqrt{x_i^2 + y_j^2}}{\sqrt{2}\varepsilon}\right),
22 or *checker-board*
24 .. math::
25 u({\bf x}, 0) = \sin(2 \pi x_i) \sin(2 \pi y_j),
27 or uniform distributed random numbers in :math:`[-1, 1]` for :math:`i, j=0,..,N-1`, where :math:`N` is the number of
28 spatial grid points. For time-stepping, the problem is treated *semi-implicitly*, i.e., the diffusion part is solved with
29 Fast-Fourier Tranform (FFT) and the nonlinear term is treated explicitly.
31 An exact solution is not known, but instead the numerical solution can be compared via a generated reference solution computed
32 by a ``SciPy`` routine.
34 This class is especially developed for solving it on GPUs using ``CuPy``.
36 Parameters
37 ----------
38 nvars : List of int tuples, optional
39 Number of unknowns in the problem, e.g. ``nvars=[(128, 128), (128, 128)]``.
40 nu : float, optional
41 Problem parameter :math:`\nu`.
42 eps : float, optional
43 Scaling parameter :math:`\varepsilon`.
44 radius : float, optional
45 Radius of the circles.
46 L : float, optional
47 Denotes the period of the function to be approximated for the Fourier transform.
48 init_type : str, optional
49 Indicates which type of initial condition is used.
51 Attributes
52 ----------
53 xvalues : cp.1darray
54 Grid points in space.
55 dx : float
56 Cupy mesh width.
57 lap : cp.1darray
58 Spectral operator for Laplacian.
59 """
61 dtype_u = cupy_mesh
62 dtype_f = imex_cupy_mesh
64 def __init__(self, nvars=None, nu=2, eps=0.04, radius=0.25, L=1.0, init_type='circle'):
65 """Initialization routine"""
67 if nvars is None:
68 nvars = [(256, 256), (64, 64)]
70 # we assert that nvars looks very particular here.. this will be necessary for coarsening in space later on
71 if len(nvars) != 2:
72 raise ProblemError('this is a 2d example, got %s' % nvars)
73 if nvars[0] != nvars[1]:
74 raise ProblemError('need a square domain, got %s' % nvars)
75 if nvars[0] % 2 != 0:
76 raise ProblemError('the setup requires nvars = 2^p per dimension')
78 # invoke super init, passing number of dofs, dtype_u and dtype_f
79 super().__init__(init=(nvars, None, cp.dtype('float64')))
80 self._makeAttributeAndRegister(
81 'nvars', 'nu', 'eps', 'radius', 'L', 'init_type', localVars=locals(), readOnly=True
82 )
84 self.dx = self.L / self.nvars[0] # could be useful for hooks, too.
85 self.xvalues = cp.array([i * self.dx - self.L / 2.0 for i in range(self.nvars[0])])
87 kx = cp.zeros(self.init[0][0])
88 ky = cp.zeros(self.init[0][1] // 2 + 1)
90 kx[: int(self.init[0][0] / 2) + 1] = 2 * np.pi / self.L * cp.arange(0, int(self.init[0][0] / 2) + 1)
91 kx[int(self.init[0][0] / 2) + 1 :] = (
92 2 * np.pi / self.L * cp.arange(int(self.init[0][0] / 2) + 1 - self.init[0][0], 0)
93 )
94 ky[:] = 2 * np.pi / self.L * cp.arange(0, self.init[0][1] // 2 + 1)
96 xv, yv = cp.meshgrid(kx, ky, indexing='ij')
97 self.lap = -(xv**2) - yv**2
99 def eval_f(self, u, t):
100 """
101 Routine to evaluate the right-hand side of the problem.
103 Parameters
104 ----------
105 u : dtype_u
106 Current values of the numerical solution.
107 t : float
108 Current time of the numerical solution is computed.
110 Returns
111 -------
112 f : dtype_f
113 The right-hand side of the problem.
114 """
116 f = self.dtype_f(self.init)
117 v = u.flatten()
118 tmp = self.lap * cp.fft.rfft2(u)
119 f.impl[:] = cp.fft.irfft2(tmp)
120 if self.eps > 0:
121 f.expl[:] = (1.0 / self.eps**2 * v * (1.0 - v**self.nu)).reshape(self.nvars)
122 return f
124 def solve_system(self, rhs, factor, u0, t):
125 """
126 Simple FFT solver for the diffusion part.
128 Parameters
129 ----------
130 rhs : dtype_f
131 Right-hand side for the linear system.
132 factor : float
133 Abbrev. for the node-to-node stepsize (or any other factor required).
134 u0 : dtype_u
135 Initial guess for the iterative solver (not used here so far).
136 t : float
137 Current time (e.g. for time-dependent BCs).
139 Parameters
140 ----------
141 me : dtype_u
142 The solution as mesh.
143 """
145 me = self.dtype_u(self.init)
146 tmp = cp.fft.rfft2(rhs) / (1.0 - factor * self.lap)
147 me[:] = cp.fft.irfft2(tmp)
149 return me
151 def u_exact(self, t):
152 r"""
153 Routine to compute the exact solution at time :math:`t`.
155 Parameters
156 ----------
157 t : float
158 Time of the exact solution.
160 Returns
161 -------
162 me : dtype_u
163 The exact solution.
164 """
166 assert t == 0, 'ERROR: u_exact only valid for t=0'
167 me = self.dtype_u(self.init, val=0.0)
168 if self.init_type == 'circle':
169 xv, yv = cp.meshgrid(self.xvalues, self.xvalues, indexing='ij')
170 me[:, :] = cp.tanh((self.radius - cp.sqrt(xv**2 + yv**2)) / (cp.sqrt(2) * self.eps))
171 elif self.init_type == 'checkerboard':
172 xv, yv = cp.meshgrid(self.xvalues, self.xvalues)
173 me[:, :] = cp.sin(2.0 * np.pi * xv) * cp.sin(2.0 * np.pi * yv)
174 elif self.init_type == 'random':
175 me[:, :] = cp.random.uniform(-1, 1, self.init)
176 else:
177 raise NotImplementedError('type of initial value not implemented, got %s' % self.init_type)
179 return me
182class allencahn2d_imex_stab(allencahn2d_imex):
183 r"""
184 This implements the two-dimensional Allen-Cahn equation with periodic boundary conditions :math:`u \in [-1, 1]^2`
185 with stabilized splitting
187 .. math::
188 \frac{\partial u}{\partial t} = \Delta u + \frac{1}{\varepsilon^2} u (1 - u^\nu) + \frac{2}{\varepsilon^2}u
190 on a spatial domain :math:`[-\frac{L}{2}, \frac{L}{2}]^2`, and constant parameter :math:`\nu`. Different initial conditions
191 can be used here, for example, circles of the form
193 .. math::
194 u({\bf x}, 0) = \tanh\left(\frac{r - \sqrt{x_i^2 + y_j^2}}{\sqrt{2}\varepsilon}\right),
196 or *checker-board*
198 .. math::
199 u({\bf x}, 0) = \sin(2 \pi x_i) \sin(2 \pi y_j),
201 or uniform distributed random numbers in :math:`[-1, 1]` for :math:`i, j=0,..,N-1`, where :math:`N` is the number of
202 spatial grid points. For time-stepping, the problem is treated *semi-implicitly*, i.e., the diffusion part is solved with
203 Fast-Fourier Tranform (FFT) and the nonlinear term is treated explicitly.
205 An exact solution is not known, but instead the numerical solution can be compared via a generated reference solution computed
206 by a ``SciPy`` routine.
208 This class is especially developed for solving it on GPUs using ``CuPy``.
210 Parameters
211 ----------
212 nvars : List of int tuples, optional
213 Number of unknowns in the problem, e.g. ``nvars=[(128, 128), (128, 128)]``.
214 nu : float, optional
215 Problem parameter :math:`\nu`.
216 eps : float, optional
217 Scaling parameter :math:`\varepsilon`.
218 radius : float, optional
219 Radius of the circles.
220 L : float, optional
221 Denotes the period of the function to be approximated for the Fourier transform.
222 init_type : str, optional
223 Indicates which type of initial condition is used.
225 Attributes
226 ----------
227 xvalues : cp.1darray
228 Grid points in space.
229 dx : float
230 Cupy mesh width.
231 lap : cp.1darray
232 Spectral operator for Laplacian.
233 """
235 def __init__(self, nvars=None, nu=2, eps=0.04, radius=0.25, L=1.0, init_type='circle'):
236 """Initialization routine"""
238 if nvars is None:
239 nvars = [(256, 256), (64, 64)]
241 super().__init__(nvars, nu, eps, radius, L, init_type)
242 self.lap -= 2.0 / self.eps**2
244 def eval_f(self, u, t):
245 """
246 Routine to evaluate the right-hand side of the problem.
248 Parameters
249 ----------
250 u : dtype_u
251 Current values of the numerical solution.
252 t : float
253 Current time of the numerical solution is computed.
255 Returns
256 -------
257 f : dtype_f
258 The right-hand side of the problem.
259 """
261 f = self.dtype_f(self.init)
262 v = u.flatten()
263 tmp = self.lap * cp.fft.rfft2(u)
264 f.impl[:] = cp.fft.irfft2(tmp)
265 if self.eps > 0:
266 f.expl[:] = (1.0 / self.eps**2 * v * (1.0 - v**self.nu) + 2.0 / self.eps**2 * v).reshape(self.nvars)
267 return f
269 def solve_system(self, rhs, factor, u0, t):
270 """
271 Simple FFT solver for the diffusion part.
273 Parameters
274 ----------
275 rhs : dtype_f
276 Right-hand side for the linear system.
277 factor : float
278 Abbrev. for the node-to-node stepsize (or any other factor required).
279 u0 : dtype_u
280 Initial guess for the iterative solver (not used here so far).
281 t : float
282 Current time (e.g. for time-dependent BCs).
284 Returns
285 -------
286 me : dtype_u
287 The solution as mesh.
288 """
290 me = self.dtype_u(self.init)
292 tmp = cp.fft.rfft2(rhs) / (1.0 - factor * self.lap)
293 me[:] = cp.fft.irfft2(tmp)
295 return me