Coverage for pySDC/projects/FastWaveSlowWave/runconvergence_acoustic.py: 50%
115 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import matplotlib
3matplotlib.use('Agg')
5import numpy as np
6from matplotlib import pyplot as plt
7from pylab import rcParams
8from matplotlib.ticker import ScalarFormatter
10from pySDC.projects.FastWaveSlowWave.HookClass_acoustic import dump_energy
12from pySDC.implementations.problem_classes.AcousticAdvection_1D_FD_imex import acoustic_1d_imex
13from pySDC.implementations.sweeper_classes.imex_1st_order import imex_1st_order
14from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI
17def compute_convergence_data(cwd=''):
18 """
19 Routine to run the 1d acoustic-advection example with different orders
21 Args:
22 cwd (string): current working directory
23 """
25 num_procs = 1
27 # initialize level parameters
28 level_params = dict()
29 level_params['restol'] = 1e-14
31 # This comes as read-in for the step class
32 step_params = dict()
34 # This comes as read-in for the problem class
35 problem_params = dict()
36 problem_params['cadv'] = 0.1
37 problem_params['cs'] = 1.00
38 problem_params['order_adv'] = 5
39 problem_params['waveno'] = 5
41 # This comes as read-in for the sweeper class
42 sweeper_params = dict()
43 sweeper_params['quad_type'] = 'RADAU-RIGHT'
44 sweeper_params['num_nodes'] = 3
45 sweeper_params['do_coll_update'] = True
47 # initialize controller parameters
48 controller_params = dict()
49 controller_params['logger_level'] = 30
50 controller_params['hook_class'] = dump_energy
52 # Fill description dictionary for easy hierarchy creation
53 description = dict()
54 description['problem_class'] = acoustic_1d_imex
55 description['sweeper_class'] = imex_1st_order
56 description['sweeper_params'] = sweeper_params
58 nsteps = np.zeros((3, 9))
59 nsteps[0, :] = [20, 30, 40, 50, 60, 70, 80, 90, 100]
60 nsteps[1, :] = nsteps[0, :]
61 nsteps[2, :] = nsteps[0, :]
63 for order in [3, 4, 5]:
64 error = np.zeros(np.shape(nsteps)[1])
66 # setup parameters "in time"
67 t0 = 0
68 Tend = 1.0
70 if order == 3:
71 file = open(cwd + 'data/conv-data.txt', 'w')
72 else:
73 file = open(cwd + 'data/conv-data.txt', 'a')
75 step_params['maxiter'] = order
76 description['step_params'] = step_params
78 for ii in range(0, np.shape(nsteps)[1]):
79 ns = nsteps[order - 3, ii]
80 if (order == 3) or (order == 4):
81 problem_params['nvars'] = [(2, int(2 * ns))]
82 elif order == 5:
83 problem_params['nvars'] = [(2, int(2 * ns))]
85 description['problem_params'] = problem_params
87 dt = Tend / float(ns)
89 level_params['dt'] = dt
90 description['level_params'] = level_params
92 # instantiate the controller
93 controller = controller_nonMPI(
94 num_procs=num_procs, controller_params=controller_params, description=description
95 )
96 # get initial values on finest level
97 P = controller.MS[0].levels[0].prob
98 uinit = P.u_exact(t0)
99 if ii == 0:
100 print("Time step: %4.2f" % dt)
101 print("Fast CFL number: %4.2f" % (problem_params['cs'] * dt / P.dx))
102 print("Slow CFL number: %4.2f" % (problem_params['cadv'] * dt / P.dx))
104 # call main function to get things done...
105 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend)
107 # compute exact solution and compare
108 uex = P.u_exact(Tend)
110 error[ii] = np.linalg.norm(uex - uend, np.inf) / np.linalg.norm(uex, np.inf)
111 file.write(str(order) + " " + str(ns) + " " + str(error[ii]) + "\n")
113 file.close()
115 for ii in range(0, np.shape(nsteps)[1]):
116 print('error for nsteps= %s: %s' % (nsteps[order - 3, ii], error[ii]))
119def plot_convergence(cwd=''):
120 """
121 Plotting routine for the convergence data
123 Args:
124 cwd (string): current workign directory
125 """
127 fs = 8
128 order = np.array([])
129 nsteps = np.array([])
130 error = np.array([])
132 file = open(cwd + 'data/conv-data.txt', 'r')
133 while True:
134 line = file.readline()
135 if not line:
136 break
137 items = str.split(line, " ", 3)
138 order = np.append(order, int(items[0]))
139 nsteps = np.append(nsteps, int(float(items[1])))
140 error = np.append(error, float(items[2]))
142 assert np.size(order) == np.size(nsteps), 'Found different number of entries in order and nsteps'
143 assert np.size(nsteps) == np.size(error), 'Found different number of entries in nsteps and error'
145 assert np.size(nsteps) % 3 == 0, 'Number of entries not a multiple of three, got %s' % np.size(nsteps)
147 N = int(np.size(nsteps) / 3)
149 error_plot = np.zeros((3, N))
150 nsteps_plot = np.zeros((3, N))
151 convline = np.zeros((3, N))
152 order_plot = np.zeros(3)
154 for ii in range(0, 3):
155 order_plot[ii] = order[N * ii]
156 for jj in range(0, N):
157 error_plot[ii, jj] = error[N * ii + jj]
158 nsteps_plot[ii, jj] = nsteps[N * ii + jj]
159 convline[ii, jj] = (
160 error_plot[ii, 0] * (float(nsteps_plot[ii, 0]) / float(nsteps_plot[ii, jj])) ** order_plot[ii]
161 )
163 color = ['r', 'b', 'g']
164 shape = ['o', 'd', 's']
165 rcParams['figure.figsize'] = 2.5, 2.5
166 rcParams['pgf.rcfonts'] = False
167 fig = plt.figure()
168 for ii in range(0, 3):
169 plt.loglog(nsteps_plot[ii, :], convline[ii, :], '-', color=color[ii])
170 plt.loglog(
171 nsteps_plot[ii, :],
172 error_plot[ii, :],
173 shape[ii],
174 markersize=fs,
175 color=color[ii],
176 label='p=' + str(int(order_plot[ii])),
177 )
179 plt.legend(loc='lower left', fontsize=fs, prop={'size': fs})
180 plt.xlabel('Number of time steps', fontsize=fs)
181 plt.ylabel('Relative error', fontsize=fs, labelpad=2)
182 plt.xlim([0.9 * np.min(nsteps_plot), 1.1 * np.max(nsteps_plot)])
183 plt.ylim([1e-5, 1e0])
184 plt.yticks([1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0], fontsize=fs)
185 plt.xticks([20, 30, 40, 60, 80, 100], fontsize=fs)
186 plt.gca().get_xaxis().get_major_formatter().labelOnlyBase = False
187 plt.gca().get_xaxis().set_major_formatter(ScalarFormatter())
188 filename = 'data/convergence.png'
189 fig.savefig(filename, bbox_inches='tight')
192if __name__ == "__main__":
193 compute_convergence_data()
194 plot_convergence()