Coverage for pySDC/projects/FastWaveSlowWave/plot_stifflimit_specrad.py: 95%

82 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-20 17:10 +0000

1import matplotlib 

2 

3matplotlib.use('Agg') 

4 

5import numpy as np 

6from matplotlib import pyplot as plt 

7from pylab import rcParams 

8 

9from pySDC.implementations.problem_classes.FastWaveSlowWave_0D import swfw_scalar 

10from pySDC.implementations.sweeper_classes.imex_1st_order import imex_1st_order 

11 

12 

13from pySDC.core.step import Step 

14 

15 

16# noinspection PyShadowingNames 

17def compute_specrad(): 

18 """ 

19 Routine to compute spectral radius and norm of the error propagation matrix E 

20 

21 Returns: 

22 numpy.nparray: list of number of nodes 

23 numpy.nparray: list of fast lambdas 

24 numpy.nparray: list of spectral radii 

25 numpy.nparray: list of norms 

26 

27 """ 

28 problem_params = dict() 

29 # SET VALUE FOR lambda_slow AND VALUES FOR lambda_fast ### 

30 problem_params['lambda_s'] = np.array([1.0 * 1j], dtype='complex') 

31 problem_params['lambda_f'] = np.array([50.0 * 1j, 100.0 * 1j], dtype='complex') 

32 problem_params['u0'] = 1.0 

33 

34 # initialize sweeper parameters 

35 sweeper_params = dict() 

36 # SET TYPE OF QUADRATURE NODES ### 

37 sweeper_params['quad_type'] = 'RADAU-RIGHT' 

38 

39 # initialize level parameters 

40 level_params = dict() 

41 level_params['dt'] = 1.0 

42 t0 = 0.0 

43 

44 # fill description dictionary for easy step instantiation 

45 description = dict() 

46 description['problem_class'] = swfw_scalar # pass problem class 

47 description['problem_params'] = problem_params # pass problem parameters 

48 description['sweeper_class'] = imex_1st_order # pass sweeper (see part B) 

49 description['level_params'] = level_params # pass level parameters 

50 description['step_params'] = dict() # pass step parameters 

51 

52 nodes_v = np.arange(2, 10) 

53 specrad = np.zeros((3, np.size(nodes_v))) 

54 norm = np.zeros((3, np.size(nodes_v))) 

55 

56 for i in range(0, np.size(nodes_v)): 

57 sweeper_params['num_nodes'] = nodes_v[i] 

58 description['sweeper_params'] = sweeper_params # pass sweeper parameters 

59 

60 # now the description contains more or less everything we need to create a step 

61 S = Step(description=description) 

62 

63 L = S.levels[0] 

64 P = L.prob 

65 

66 u0 = S.levels[0].prob.u_exact(t0) 

67 S.init_step(u0) 

68 QE = L.sweep.QE[1:, 1:] 

69 QI = L.sweep.QI[1:, 1:] 

70 Q = L.sweep.coll.Qmat[1:, 1:] 

71 nnodes = L.sweep.coll.num_nodes 

72 dt = L.params.dt 

73 

74 assert nnodes == nodes_v[i], 'Something went wrong during instantiation, nnodes is not correct, got %s' % nnodes 

75 

76 for j in range(0, 2): 

77 LHS = np.eye(nnodes) - dt * (P.lambda_f[j] * QI + P.lambda_s[0] * QE) 

78 RHS = dt * ((P.lambda_f[j] + P.lambda_s[0]) * Q - (P.lambda_f[j] * QI + P.lambda_s[0] * QE)) 

79 evals, evecs = np.linalg.eig(np.linalg.inv(LHS).dot(RHS)) 

80 specrad[j + 1, i] = np.linalg.norm(evals, np.inf) 

81 norm[j + 1, i] = np.linalg.norm(np.linalg.inv(LHS).dot(RHS), np.inf) 

82 

83 if L.sweep.coll.left_is_node: 

84 # For Lobatto nodes, first column and row are all zeros, since q_1 = q_0; hence remove them 

85 QI = QI[1:, 1:] 

86 Q = Q[1:, 1:] 

87 # Eigenvalue of error propagation matrix in stiff limit: E = I - inv(QI)*Q 

88 evals, evecs = np.linalg.eig(np.eye(nnodes - 1) - np.linalg.inv(QI).dot(Q)) 

89 norm[0, i] = np.linalg.norm(np.eye(nnodes - 1) - np.linalg.inv(QI).dot(Q), np.inf) 

90 else: 

91 evals, evecs = np.linalg.eig(np.eye(nnodes) - np.linalg.inv(QI).dot(Q)) 

92 norm[0, i] = np.linalg.norm(np.eye(nnodes) - np.linalg.inv(QI).dot(Q), np.inf) 

93 specrad[0, i] = np.linalg.norm(evals, np.inf) 

94 

95 print("Spectral radius of infinitely fast wave case > 1.0 for M=%2i" % nodes_v[np.argmax(specrad[0, :] > 1.0)]) 

96 print("Spectral radius of > 1.0 for M=%2i" % nodes_v[np.argmax(specrad[1, :] > 1.0)]) 

97 

98 return nodes_v, problem_params['lambda_f'], specrad, norm 

99 

100 

101# noinspection PyShadowingNames 

102def plot_specrad(nodes_v, lambda_f, specrad, norm): 

103 """ 

104 Plotting function for spectral radii and norms 

105 

106 Args: 

107 nodes_v (numpy.nparray): list of number of nodes 

108 lambda_f (numpy.nparray): list of fast lambdas 

109 specrad (numpy.nparray): list of spectral radii 

110 norm (numpy.nparray): list of norms 

111 """ 

112 fs = 8 

113 rcParams['figure.figsize'] = 2.5, 2.5 

114 rcParams['pgf.rcfonts'] = False 

115 fig = plt.figure() 

116 plt.plot(nodes_v, specrad[0, :], 'rd-', markersize=fs - 2, label=r'$\lambda_{fast} = \infty$') 

117 plt.plot(nodes_v, specrad[1, :], 'bo-', markersize=fs - 2, label=r'$\lambda_{fast} = %2.0f $' % lambda_f[0].imag) 

118 plt.plot(nodes_v, specrad[2, :], 'gs-', markersize=fs - 2, label=r'$\lambda_{fast} = %2.0f $' % lambda_f[1].imag) 

119 plt.xlabel(r'Number of nodes $M$', fontsize=fs) 

120 plt.ylabel(r'Spectral radius $\sigma\left( \mathbf{E} \right)$', fontsize=fs, labelpad=2) 

121 plt.legend(loc='lower right', fontsize=fs, prop={'size': fs}) 

122 plt.xlim([np.min(nodes_v), np.max(nodes_v)]) 

123 plt.ylim([0, 1.0]) 

124 plt.yticks(fontsize=fs) 

125 plt.xticks(fontsize=fs) 

126 filename = 'data/stifflimit-specrad.png' 

127 fig.savefig(filename, bbox_inches='tight') 

128 

129 fig = plt.figure() 

130 plt.plot(nodes_v, norm[0, :], 'rd-', markersize=fs - 2, label=r'$\lambda_{fast} = \infty$') 

131 plt.plot(nodes_v, norm[1, :], 'bo-', markersize=fs - 2, label=r'$\lambda_{fast} = %2.0f $' % lambda_f[0].imag) 

132 plt.plot(nodes_v, norm[2, :], 'gs-', markersize=fs - 2, label=r'$\lambda_{fast} = %2.0f $' % lambda_f[1].imag) 

133 plt.xlabel(r'Number of nodes $M$', fontsize=fs) 

134 plt.ylabel(r'Norm $\left|| \mathbf{E} \right||_{\infty}$', fontsize=fs, labelpad=2) 

135 plt.legend(loc='lower right', fontsize=fs, prop={'size': fs}) 

136 plt.xlim([np.min(nodes_v), np.max(nodes_v)]) 

137 plt.ylim([0, 2.4]) 

138 plt.yticks(fontsize=fs) 

139 plt.xticks(fontsize=fs) 

140 filename = 'data/stifflimit-norm.png' 

141 fig.savefig(filename, bbox_inches='tight') 

142 

143 

144if __name__ == "__main__": 

145 nodes_v, lambda_f, specrad, norm = compute_specrad() 

146 plot_specrad(nodes_v, lambda_f, specrad, norm)