Coverage for pySDC/projects/compression/order.py: 77%
79 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import numpy as np
2import matplotlib.pyplot as plt
4from pySDC.projects.Resilience.advection import run_advection
6from pySDC.helpers.stats_helper import get_sorted
7from pySDC.helpers.plot_helper import figsize_by_journal
8from pySDC.implementations.hooks.log_errors import LogGlobalErrorPostRun
10from pySDC.projects.compression.compression_convergence_controller import Compression
12MACHINEPRECISION = (
13 1e-8 # generous tolerance below which we ascribe errors to floating point rounding errors rather than compression
14)
15LOGGER_LEVEL = 30
18def single_run(problem, description=None, thresh=1e-10, Tend=2e-1, useMPI=False, num_procs=1):
19 description = {} if description is None else description
21 compressor_args = {}
22 compressor_args['compressor_config'] = {'pressio:abs': thresh}
24 if thresh > 0:
25 description['convergence_controllers'] = {Compression: {'compressor_args': compressor_args}}
27 controller_params = {
28 'mssdc_jac': False,
29 'logger_level': LOGGER_LEVEL,
30 }
32 stats, _, _ = problem(
33 custom_description=description,
34 hook_class=LogGlobalErrorPostRun,
35 Tend=Tend,
36 use_MPI=useMPI,
37 num_procs=num_procs,
38 custom_controller_params=controller_params,
39 )
41 if useMPI:
42 from mpi4py import MPI
44 comm = MPI.COMM_WORLD
45 else:
46 comm = None
47 e = min([me[1] for me in get_sorted(stats, type='e_global_post_run', comm=comm)])
48 return e
51def multiple_runs(problem, values, expected_order, mode='dt', thresh=1e-10, useMPI=False, num_procs=1, **kwargs):
52 errors = np.zeros_like(values)
54 description = {
55 'level_params': {},
56 'problam_params': {},
57 'step_params': {},
58 }
59 if mode == 'dt':
60 description['step_params'] = {'maxiter': expected_order}
61 elif mode == 'nvars':
62 description['problem_params'] = {'order': expected_order}
64 for i in range(len(values)):
65 if mode == 'dt':
66 description['level_params']['dt'] = values[i]
67 Tend = values[i] * (5 if num_procs == 1 else 2 * num_procs)
68 elif mode == 'nvars':
69 description['problem_params']['nvars'] = values[i]
70 Tend = 2e-1
72 errors[i] = single_run(problem, description, thresh=thresh, Tend=Tend, useMPI=useMPI, num_procs=num_procs)
73 return values, errors
76def get_order(values, errors, thresh=1e-16, expected_order=None):
77 values = np.array(values)
78 idx = np.argsort(values)
79 local_orders = np.log(errors[idx][1:] / errors[idx][:-1]) / np.log(values[idx][1:] / values[idx][:-1])
80 order = np.mean(local_orders[errors[idx][1:] > max([thresh, MACHINEPRECISION])])
81 if expected_order is not None:
82 assert np.isclose(order, expected_order, atol=0.5), f"Expected order {expected_order}, but got {order:.2f}!"
83 return order
86def plot_order(values, errors, ax, thresh=1e-16, color='black', expected_order=None, **kwargs):
87 values = np.array(values)
88 order = get_order(values, errors, thresh=thresh, expected_order=expected_order)
89 ax.scatter(values, errors, color=color, **kwargs)
90 ax.loglog(values, errors[0] * (values / values[0]) ** order, color=color, label=f'p={order:.2f}', **kwargs)
93def plot_order_in_time(ax, thresh, useMPI=False, num_procs=1):
94 problem = run_advection
96 base_configs_dt = {
97 'values': np.array([2.0 ** (-i) for i in [2, 3, 4, 5, 6, 7, 8, 9]]),
98 'mode': 'dt',
99 'ax': ax,
100 'thresh': thresh,
101 }
103 configs_dt = {}
104 configs_dt[2] = {**base_configs_dt, 'color': 'black'}
105 configs_dt[3] = {**base_configs_dt, 'color': 'magenta'}
106 configs_dt[4] = {**base_configs_dt, 'color': 'teal'}
107 configs_dt[5] = {**base_configs_dt, 'color': 'orange'}
108 # configs_dt[6] = {**base_configs_dt, 'color': 'blue'}
110 for key in configs_dt.keys():
111 values, errors = multiple_runs(
112 problem, expected_order=key, useMPI=useMPI, **configs_dt[key], num_procs=num_procs
113 )
114 plot_order(
115 values,
116 errors,
117 ax=configs_dt[key]['ax'],
118 thresh=configs_dt[key]['thresh'] * 1e2,
119 color=configs_dt[key]['color'],
120 expected_order=key + 1,
121 )
122 base_configs_dt['ax'].set_xlabel(r'$\Delta t$')
123 base_configs_dt['ax'].set_ylabel('local error')
124 base_configs_dt['ax'].axhline(
125 base_configs_dt['thresh'], color='grey', ls='--', label=rf'$\|\delta\|={ {thresh:.0e}} $'
126 )
127 base_configs_dt['ax'].legend(frameon=False)
130def order_in_time_different_error_bounds():
131 fig, axs = plt.subplots(
132 2, 2, figsize=figsize_by_journal('Springer_Numerical_Algorithms', 1.0, 1.0), sharex=True, sharey=True
133 )
134 threshs = [1e-6, 1e-8, 1e-10, 1e-12]
136 for i in range(len(threshs)):
137 ax = axs.flatten()[i]
138 plot_order_in_time(ax, threshs[i])
139 if i != 2:
140 ax.set_ylabel('')
141 ax.set_xlabel('')
142 fig.suptitle('Order in time for advection problem')
143 fig.tight_layout()
144 fig.savefig('compression-order-time.pdf')
147if __name__ == '__main__':
148 order_in_time_different_error_bounds()
150 # base_configs_nvars = {
151 # 'values': [128, 256, 512, 1024],
152 # # 'values': np.array([2**(i) for i in [4, 5, 6, 7, 8, 9]]),
153 # 'mode': 'nvars',
154 # }
156 # configs_nvars = {}
157 # configs_nvars[2] = {**base_configs_nvars, 'color': 'black'}
158 # configs_nvars[4] = {**base_configs_nvars, 'color': 'magenta'}
160 # for key in configs_nvars.keys():
161 # values, errors = multiple_runs(problem, expected_order=key, **configs_nvars[key])
162 # plot_order(values, errors, axs[1], color=configs_nvars[key]['color'])
164 plt.show()