Coverage for pySDC/tutorial/step_8/C_iteration_estimator.py: 100%

179 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-19 09:13 +0000

1import numpy as np 

2from pathlib import Path 

3 

4from pySDC.helpers.stats_helper import get_sorted 

5 

6from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI 

7from pySDC.implementations.problem_classes.HeatEquation_ND_FD import heatNd_forced 

8from pySDC.implementations.problem_classes.AdvectionEquation_ND_FD import advectionNd 

9from pySDC.implementations.problem_classes.Auzinger_implicit import auzinger 

10from pySDC.implementations.sweeper_classes.imex_1st_order import imex_1st_order 

11from pySDC.implementations.sweeper_classes.generic_implicit import generic_implicit 

12from pySDC.implementations.transfer_classes.TransferMesh import mesh_to_mesh 

13from pySDC.implementations.transfer_classes.TransferMesh_NoCoarse import mesh_to_mesh as mesh_to_mesh_nc 

14from pySDC.implementations.convergence_controller_classes.check_iteration_estimator import CheckIterationEstimatorNonMPI 

15from pySDC.tutorial.step_8.HookClass_error_output import error_output 

16 

17 

18def setup_diffusion(dt=None, ndim=None, ml=False): 

19 # initialize level parameters 

20 level_params = dict() 

21 level_params['restol'] = 1e-10 

22 level_params['dt'] = dt # time-step size 

23 level_params['nsweeps'] = 1 

24 

25 # initialize sweeper parameters 

26 sweeper_params = dict() 

27 sweeper_params['quad_type'] = 'RADAU-RIGHT' 

28 sweeper_params['num_nodes'] = 3 

29 sweeper_params['QI'] = ['LU'] # For the IMEX sweeper, the LU-trick can be activated for the implicit part 

30 # sweeper_params['initial_guess'] = 'zero' 

31 

32 # initialize problem parameters 

33 problem_params = dict() 

34 problem_params['order'] = 8 # order of accuracy for FD discretization in space 

35 problem_params['nu'] = 0.1 # diffusion coefficient 

36 problem_params['bc'] = 'periodic' # boundary conditions 

37 problem_params['freq'] = tuple(2 for _ in range(ndim)) # frequencies 

38 if ml: 

39 problem_params['nvars'] = [tuple(64 for _ in range(ndim)), tuple(32 for _ in range(ndim))] # number of dofs 

40 else: 

41 problem_params['nvars'] = tuple(64 for _ in range(ndim)) # number of dofs 

42 problem_params['solver_type'] = 'CG' # do CG instead of LU 

43 problem_params['liniter'] = 10 # number of CG iterations 

44 

45 # initialize step parameters 

46 step_params = dict() 

47 step_params['maxiter'] = 50 

48 step_params['errtol'] = 1e-07 

49 

50 # initialize space transfer parameters 

51 space_transfer_params = dict() 

52 space_transfer_params['rorder'] = 2 

53 space_transfer_params['iorder'] = 6 

54 space_transfer_params['periodic'] = True 

55 

56 # setup the iteration estimator 

57 convergence_controllers = dict() 

58 convergence_controllers[CheckIterationEstimatorNonMPI] = {'errtol': 1e-7} 

59 

60 # initialize controller parameters 

61 controller_params = dict() 

62 controller_params['logger_level'] = 30 

63 controller_params['hook_class'] = error_output 

64 

65 # fill description dictionary for easy step instantiation 

66 description = dict() 

67 description['problem_class'] = heatNd_forced # pass problem class 

68 description['problem_params'] = problem_params # pass problem parameters 

69 description['sweeper_class'] = imex_1st_order # pass sweeper (see part B) 

70 description['sweeper_params'] = sweeper_params # pass sweeper parameters 

71 description['level_params'] = level_params # pass level parameters 

72 description['step_params'] = step_params # pass step parameters 

73 description['convergence_controllers'] = convergence_controllers 

74 if ml: 

75 description['space_transfer_class'] = mesh_to_mesh # pass spatial transfer class 

76 description['space_transfer_params'] = space_transfer_params # pass parameters for spatial transfer 

77 

78 return description, controller_params 

79 

80 

81def setup_advection(dt=None, ndim=None, ml=False): 

82 # initialize level parameters 

83 level_params = dict() 

84 level_params['restol'] = 1e-10 

85 level_params['dt'] = dt # time-step size 

86 level_params['nsweeps'] = 1 

87 

88 # initialize sweeper parameters 

89 sweeper_params = dict() 

90 sweeper_params['quad_type'] = 'RADAU-RIGHT' 

91 sweeper_params['num_nodes'] = 3 

92 sweeper_params['QI'] = ['LU'] # For the IMEX sweeper, the LU-trick can be activated for the implicit part 

93 # sweeper_params['initial_guess'] = 'zero' 

94 

95 # initialize problem parameters 

96 problem_params = dict() 

97 problem_params['order'] = 6 # order of accuracy for FD discretization in space 

98 problem_params['stencil_type'] = 'center' # order of accuracy for FD discretization in space 

99 problem_params['bc'] = 'periodic' # boundary conditions 

100 problem_params['c'] = 0.1 # diffusion coefficient 

101 problem_params['freq'] = tuple(2 for _ in range(ndim)) # frequencies 

102 if ml: 

103 problem_params['nvars'] = [tuple(64 for _ in range(ndim)), tuple(32 for _ in range(ndim))] # number of dofs 

104 else: 

105 problem_params['nvars'] = tuple(64 for _ in range(ndim)) # number of dofs 

106 problem_params['solver_type'] = 'GMRES' # do GMRES instead of LU 

107 problem_params['liniter'] = 10 # number of GMRES iterations 

108 

109 # initialize step parameters 

110 step_params = dict() 

111 step_params['maxiter'] = 50 

112 step_params['errtol'] = 1e-07 

113 

114 # initialize space transfer parameters 

115 space_transfer_params = dict() 

116 space_transfer_params['rorder'] = 2 

117 space_transfer_params['iorder'] = 6 

118 space_transfer_params['periodic'] = True 

119 

120 # setup the iteration estimator 

121 convergence_controllers = dict() 

122 convergence_controllers[CheckIterationEstimatorNonMPI] = {'errtol': 1e-7} 

123 

124 # initialize controller parameters 

125 controller_params = dict() 

126 controller_params['logger_level'] = 30 

127 controller_params['hook_class'] = error_output 

128 

129 # fill description dictionary for easy step instantiation 

130 description = dict() 

131 description['problem_class'] = advectionNd 

132 description['problem_params'] = problem_params # pass problem parameters 

133 description['sweeper_class'] = generic_implicit 

134 description['sweeper_params'] = sweeper_params # pass sweeper parameters 

135 description['level_params'] = level_params # pass level parameters 

136 description['step_params'] = step_params # pass step parameters 

137 description['convergence_controllers'] = convergence_controllers 

138 if ml: 

139 description['space_transfer_class'] = mesh_to_mesh # pass spatial transfer class 

140 description['space_transfer_params'] = space_transfer_params # pass parameters for spatial transfer 

141 

142 return description, controller_params 

143 

144 

145def setup_auzinger(dt=None, ml=False): 

146 # initialize level parameters 

147 level_params = dict() 

148 level_params['restol'] = 1e-10 

149 level_params['dt'] = dt # time-step size 

150 level_params['nsweeps'] = 1 

151 

152 # initialize sweeper parameters 

153 sweeper_params = dict() 

154 sweeper_params['quad_type'] = 'RADAU-RIGHT' 

155 if ml: 

156 sweeper_params['num_nodes'] = [3, 2] 

157 else: 

158 sweeper_params['num_nodes'] = 3 

159 sweeper_params['QI'] = ['LU'] # For the IMEX sweeper, the LU-trick can be activated for the implicit part 

160 # sweeper_params['initial_guess'] = 'zero' 

161 

162 # initialize problem parameters 

163 problem_params = dict() 

164 problem_params['newton_tol'] = 1e-12 

165 problem_params['newton_maxiter'] = 10 

166 

167 # initialize step parameters 

168 step_params = dict() 

169 step_params['maxiter'] = 50 

170 step_params['errtol'] = 1e-07 

171 

172 # setup the iteration estimator 

173 convergence_controllers = dict() 

174 convergence_controllers[CheckIterationEstimatorNonMPI] = {'errtol': 1e-7} 

175 

176 # initialize controller parameters 

177 controller_params = dict() 

178 controller_params['logger_level'] = 30 

179 controller_params['hook_class'] = error_output 

180 

181 # fill description dictionary for easy step instantiation 

182 description = dict() 

183 description['problem_class'] = auzinger 

184 description['problem_params'] = problem_params # pass problem parameters 

185 description['sweeper_class'] = generic_implicit 

186 description['sweeper_params'] = sweeper_params # pass sweeper parameters 

187 description['level_params'] = level_params # pass level parameters 

188 description['step_params'] = step_params # pass step parameters 

189 description['convergence_controllers'] = convergence_controllers 

190 if ml: 

191 description['space_transfer_class'] = mesh_to_mesh_nc # pass spatial transfer class 

192 

193 return description, controller_params 

194 

195 

196def run_simulations(type=None, ndim_list=None, Tend=None, nsteps_list=None, ml=False, nprocs=None): 

197 """ 

198 A simple test program to do SDC runs for the heat equation in various dimensions 

199 """ 

200 

201 t0 = None 

202 dt = None 

203 description = None 

204 controller_params = None 

205 

206 Path("data").mkdir(parents=True, exist_ok=True) 

207 f = open('data/step_8_C_out.txt', 'a') 

208 

209 for ndim in ndim_list: 

210 for nsteps in nsteps_list: 

211 if type == 'diffusion': 

212 # set time parameters 

213 t0 = 0.0 

214 dt = (Tend - t0) / nsteps 

215 description, controller_params = setup_diffusion(dt, ndim, ml) 

216 mean_number_of_iterations = 3.00 if ml else 5.75 

217 elif type == 'advection': 

218 # set time parameters 

219 t0 = 0.0 

220 dt = (Tend - t0) / nsteps 

221 description, controller_params = setup_advection(dt, ndim, ml) 

222 mean_number_of_iterations = 2.00 if ml else 4.00 

223 elif type == 'auzinger': 

224 assert ndim == 1 

225 # set time parameters 

226 t0 = 0.0 

227 dt = (Tend - t0) / nsteps 

228 description, controller_params = setup_auzinger(dt, ml) 

229 mean_number_of_iterations = 3.62 if ml else 5.62 

230 

231 out = f'Running {type} in {ndim} dimensions with time-step size {dt}...\n' 

232 f.write(out + '\n') 

233 print(out) 

234 

235 # Warning: this is black magic used to run an 'exact' collocation solver for each step within the hooks 

236 description['step_params']['description'] = description 

237 description['step_params']['controller_params'] = controller_params 

238 

239 # instantiate controller 

240 controller = controller_nonMPI( 

241 num_procs=nprocs, controller_params=controller_params, description=description 

242 ) 

243 

244 # get initial values on finest level 

245 P = controller.MS[0].levels[0].prob 

246 uinit = P.u_exact(t0) 

247 

248 # call main function to get things done... 

249 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend) 

250 

251 # filter statistics by type (number of iterations) 

252 iter_counts = get_sorted(stats, type='niter', sortby='time') 

253 

254 niters = np.array([item[1] for item in iter_counts]) 

255 out = f' Mean number of iterations: {np.mean(niters):4.2f}' 

256 f.write(out + '\n') 

257 print(out) 

258 

259 # filter statistics by type (error after time-step) 

260 PDE_errors = get_sorted(stats, type='PDE_error_after_step', sortby='time') 

261 coll_errors = get_sorted(stats, type='coll_error_after_step', sortby='time') 

262 for iters, PDE_err, coll_err in zip(iter_counts, PDE_errors, coll_errors): 

263 assert coll_err[1] < description['step_params']['errtol'], f'Error too high, got {coll_err[1]:8.4e}' 

264 out = ( 

265 f' Errors after step {PDE_err[0]:8.4f} with {iters[1]} iterations: ' 

266 f'{PDE_err[1]:8.4e} / {coll_err[1]:8.4e}' 

267 ) 

268 f.write(out + '\n') 

269 print(out) 

270 f.write('\n') 

271 print() 

272 

273 # filter statistics by type (error after time-step) 

274 timing = get_sorted(stats, type='timing_run', sortby='time') 

275 out = f'...done, took {timing[0][1]} seconds!' 

276 f.write(out + '\n') 

277 print(out) 

278 

279 print() 

280 out = '-----------------------------------------------------------------------------' 

281 f.write(out + '\n') 

282 print(out) 

283 

284 f.close() 

285 assert np.isclose( 

286 mean_number_of_iterations, np.mean(niters), atol=1e-2 

287 ), f' \ 

288 Expected \ 

289{mean_number_of_iterations:.2f} mean iterations, but got {np.mean(niters):.2f}' 

290 

291 

292def main(): 

293 run_simulations(type='diffusion', ndim_list=[1], Tend=1.0, nsteps_list=[8], ml=False, nprocs=1) 

294 run_simulations(type='diffusion', ndim_list=[1], Tend=1.0, nsteps_list=[8], ml=True, nprocs=1) 

295 

296 run_simulations(type='advection', ndim_list=[1], Tend=1.0, nsteps_list=[8], ml=False, nprocs=1) 

297 run_simulations(type='advection', ndim_list=[1], Tend=1.0, nsteps_list=[8], ml=True, nprocs=1) 

298 

299 run_simulations(type='auzinger', ndim_list=[1], Tend=1.0, nsteps_list=[8], ml=False, nprocs=1) 

300 run_simulations(type='auzinger', ndim_list=[1], Tend=1.0, nsteps_list=[8], ml=True, nprocs=1) 

301 

302 

303if __name__ == "__main__": 

304 main()