Coverage for pySDC/projects/AllenCahn_Bayreuth/run_temp_forcing_benchmark.py: 0%
78 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1from argparse import ArgumentParser
2import numpy as np
3from mpi4py import MPI
5from pySDC.helpers.stats_helper import get_sorted
7from pySDC.implementations.controller_classes.controller_MPI import controller_MPI
8from pySDC.implementations.sweeper_classes.imex_1st_order import imex_1st_order
9from pySDC.implementations.problem_classes.AllenCahn_Temp_MPIFFT import allencahn_temp_imex
10from pySDC.implementations.transfer_classes.TransferMesh_MPIFFT import fft_to_fft
12from pySDC.projects.AllenCahn_Bayreuth.AllenCahn_dump import dump
15def run_simulation(name=None, nprocs_space=None):
16 """
17 A simple test program to do PFASST runs for the AC equation
18 """
20 # set MPI communicator
21 comm = MPI.COMM_WORLD
23 world_rank = comm.Get_rank()
24 world_size = comm.Get_size()
26 # split world communicator to create space-communicators
27 if nprocs_space is not None:
28 color = int(world_rank / nprocs_space)
29 else:
30 color = int(world_rank / 1)
31 space_comm = comm.Split(color=color)
32 space_size = space_comm.Get_size()
33 space_rank = space_comm.Get_rank()
35 # split world communicator to create time-communicators
36 if nprocs_space is not None:
37 color = int(world_rank % nprocs_space)
38 else:
39 color = int(world_rank / world_size)
40 time_comm = comm.Split(color=color)
41 time_size = time_comm.Get_size()
42 time_rank = time_comm.Get_rank()
44 # initialize level parameters
45 level_params = dict()
46 level_params['restol'] = 1e-08
47 level_params['dt'] = 1e-03
48 level_params['nsweeps'] = [3, 1]
50 # initialize sweeper parameters
51 sweeper_params = dict()
52 sweeper_params['quad_type'] = 'RADAU-RIGHT'
53 sweeper_params['num_nodes'] = [3]
54 sweeper_params['QI'] = ['LU'] # For the IMEX sweeper, the LU-trick can be activated for the implicit part
55 sweeper_params['initial_guess'] = 'zero'
57 # initialize problem parameters
58 problem_params = dict()
59 problem_params['L'] = 16.0
60 problem_params['nvars'] = [(48 * 48, 48 * 48), (8 * 48, 8 * 48)]
61 problem_params['eps'] = [0.04]
62 problem_params['radius'] = 0.25
63 problem_params['TM'] = 1.0
64 problem_params['D'] = 1.0
65 problem_params['dw'] = [300.0]
66 problem_params['comm'] = space_comm
67 problem_params['init_type'] = 'circle_rand'
68 problem_params['spectral'] = True
70 # initialize step parameters
71 step_params = dict()
72 step_params['maxiter'] = 50
74 # initialize controller parameters
75 controller_params = dict()
76 controller_params['logger_level'] = 20 if space_rank == 0 else 99 # set level depending on rank
77 controller_params['hook_class'] = dump
78 controller_params['predict_type'] = 'fine_only'
80 # fill description dictionary for easy step instantiation
81 description = dict()
82 description['problem_params'] = problem_params # pass problem parameters
83 description['sweeper_class'] = imex_1st_order
84 description['sweeper_params'] = sweeper_params # pass sweeper parameters
85 description['level_params'] = level_params # pass level parameters
86 description['step_params'] = step_params # pass step parameters
87 description['space_transfer_class'] = fft_to_fft
88 description['problem_class'] = allencahn_temp_imex
90 # set time parameters
91 t0 = 0.0
92 Tend = 100 * 0.001
94 if space_rank == 0 and time_rank == 0:
95 out = f'---------> Running {name} with {time_size} process(es) in time and {space_size} process(es) in space...'
96 print(out)
98 # instantiate controller
99 controller = controller_MPI(controller_params=controller_params, description=description, comm=time_comm)
101 # get initial values on finest level
102 P = controller.S.levels[0].prob
103 uinit = P.u_exact(t0)
105 # call main function to get things done...
106 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend)
108 if space_rank == 0:
109 print()
111 # convert filtered statistics to list of iterations count, sorted by time
112 iter_counts = get_sorted(stats, type='niter', sortby='time')
114 niters = np.array([item[1] for item in iter_counts])
115 out = f'Mean number of iterations on rank {time_rank}: {np.mean(niters):.4f}'
116 print(out)
118 timing = get_sorted(stats, type='timing_setup', sortby='time')
119 out = f'Setup time on rank {time_rank}: {timing[0][1]:.4f} sec.'
120 print(out)
122 timing = get_sorted(stats, type='timing_run', sortby='time')
123 out = f'Time to solution on rank {time_rank}: {timing[0][1]:.4f} sec.'
124 print(out)
126 space_comm.Free()
127 time_comm.Free()
130if __name__ == "__main__":
131 # Add parser to get number of processors in space and setup (have to do this here to enable automatic testing)
132 parser = ArgumentParser()
133 parser.add_argument("-n", "--nprocs_space", help='Specifies the number of processors in space', type=int)
134 args = parser.parse_args()
136 name = 'AC-bench-tempforce'
137 run_simulation(name=name, nprocs_space=args.nprocs_space)