Coverage for pySDC/implementations/controller_classes/controller_nonMPI.py: 99%

295 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-20 17:10 +0000

1import itertools 

2import copy as cp 

3import numpy as np 

4import dill 

5 

6from pySDC.core.controller import Controller 

7from pySDC.core import step as stepclass 

8from pySDC.core.errors import ControllerError, CommunicationError 

9from pySDC.implementations.convergence_controller_classes.basic_restarting import BasicRestarting 

10 

11 

12class controller_nonMPI(Controller): 

13 """ 

14 

15 PFASST controller, running serialized version of PFASST in blocks (MG-style) 

16 

17 """ 

18 

19 def __init__(self, num_procs, controller_params, description): 

20 """ 

21 Initialization routine for PFASST controller 

22 

23 Args: 

24 num_procs: number of parallel time steps (still serial, though), can be 1 

25 controller_params: parameter set for the controller and the steps 

26 description: all the parameters to set up the rest (levels, problems, transfer, ...) 

27 """ 

28 

29 if 'predict' in controller_params: 

30 raise ControllerError('predict flag is ignored, use predict_type instead') 

31 

32 # call parent's initialization routine 

33 super().__init__(controller_params, description, useMPI=False) 

34 

35 self.MS = [stepclass.Step(description)] 

36 

37 # try to initialize via dill.copy (much faster for many time-steps) 

38 try: 

39 for _ in range(num_procs - 1): 

40 self.MS.append(dill.copy(self.MS[0])) 

41 # if this fails (e.g. due to un-picklable data in the steps), initialize separately 

42 except (dill.PicklingError, TypeError, ValueError) as error: 

43 self.logger.warning(f'Need to initialize steps separately due to pickling error: {error}') 

44 for _ in range(num_procs - 1): 

45 self.MS.append(stepclass.Step(description)) 

46 

47 self.base_convergence_controllers += [BasicRestarting.get_implementation(useMPI=False)] 

48 for convergence_controller in self.base_convergence_controllers: 

49 self.add_convergence_controller(convergence_controller, description) 

50 

51 if self.params.dump_setup: 

52 self.dump_setup(step=self.MS[0], controller_params=controller_params, description=description) 

53 

54 if num_procs > 1 and len(self.MS[0].levels) > 1: 

55 for S in self.MS: 

56 for L in S.levels: 

57 if not L.sweep.coll.right_is_node: 

58 raise ControllerError("For PFASST to work, we assume uend^k = u_M^k") 

59 

60 if all(len(S.levels) == len(self.MS[0].levels) for S in self.MS): 

61 self.nlevels = len(self.MS[0].levels) 

62 else: 

63 raise ControllerError('all steps need to have the same number of levels') 

64 

65 if self.nlevels == 0: 

66 raise ControllerError('need at least one level') 

67 

68 self.nsweeps = [] 

69 for nl in range(self.nlevels): 

70 if all(S.levels[nl].params.nsweeps == self.MS[0].levels[nl].params.nsweeps for S in self.MS): 

71 self.nsweeps.append(self.MS[0].levels[nl].params.nsweeps) 

72 

73 if self.nlevels > 1 and self.nsweeps[-1] > 1: 

74 raise ControllerError('this controller cannot do multiple sweeps on coarsest level') 

75 

76 if self.nlevels == 1 and self.params.predict_type is not None: 

77 self.logger.warning( 

78 'you have specified a predictor type but only a single level.. predictor will be ignored' 

79 ) 

80 

81 for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: 

82 C.reset_buffers_nonMPI(self) 

83 C.setup_status_variables(self, MS=self.MS) 

84 

85 def run(self, u0, t0, Tend): 

86 """ 

87 Main driver for running the serial version of SDC, MSSDC, MLSDC and PFASST (virtual parallelism) 

88 

89 Args: 

90 u0: initial values 

91 t0: starting time 

92 Tend: ending time 

93 

94 Returns: 

95 end values on the finest level 

96 stats object containing statistics for each step, each level and each iteration 

97 """ 

98 

99 # some initializations and reset of statistics 

100 uend = None 

101 num_procs = len(self.MS) 

102 for hook in self.hooks: 

103 hook.reset_stats() 

104 

105 # initial ordering of the steps: 0,1,...,Np-1 

106 slots = list(range(num_procs)) 

107 

108 # initialize time variables of each step 

109 time = [t0 + sum(self.MS[j].dt for j in range(p)) for p in slots] 

110 

111 # determine which steps are still active (time < Tend) 

112 active = [time[p] < Tend - 10 * np.finfo(float).eps for p in slots] 

113 

114 if not any(active): 

115 raise ControllerError('Nothing to do, check t0, dt and Tend.') 

116 

117 # compress slots according to active steps, i.e. remove all steps which have times above Tend 

118 active_slots = list(itertools.compress(slots, active)) 

119 

120 # initialize block of steps with u0 

121 self.restart_block(active_slots, time, u0) 

122 

123 for hook in self.hooks: 

124 hook.post_setup(step=None, level_number=None) 

125 

126 # call pre-run hook 

127 for S in self.MS: 

128 for hook in self.hooks: 

129 hook.pre_run(step=S, level_number=0) 

130 

131 # main loop: as long as at least one step is still active (time < Tend), do something 

132 while any(active): 

133 MS_active = [self.MS[p] for p in active_slots] 

134 done = False 

135 while not done: 

136 done = self.pfasst(MS_active) 

137 

138 restarts = [S.status.restart for S in MS_active] 

139 restart_at = np.where(restarts)[0][0] if True in restarts else len(MS_active) 

140 if True in restarts: # restart part of the block 

141 # initial condition to next block is initial condition of step that needs restarting 

142 uend = self.MS[restart_at].levels[0].u[0] 

143 time[active_slots[0]] = time[restart_at] 

144 self.logger.info(f'Starting next block with initial conditions from step {restart_at}') 

145 

146 else: # move on to next block 

147 # initial condition for next block is last solution of current block 

148 uend = self.MS[active_slots[-1]].levels[0].uend 

149 time[active_slots[0]] = time[active_slots[-1]] + self.MS[active_slots[-1]].dt 

150 

151 for S in MS_active[:restart_at]: 

152 for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: 

153 C.post_step_processing(self, S, MS=MS_active) 

154 

155 for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: 

156 [C.prepare_next_block(self, S, len(active_slots), time, Tend, MS=MS_active) for S in self.MS] 

157 

158 # setup the times of the steps for the next block 

159 for i in range(1, len(active_slots)): 

160 time[active_slots[i]] = time[active_slots[i] - 1] + self.MS[active_slots[i] - 1].dt 

161 

162 # determine new set of active steps and compress slots accordingly 

163 active = [time[p] < Tend - 10 * np.finfo(float).eps for p in slots] 

164 active_slots = list(itertools.compress(slots, active)) 

165 

166 # restart active steps (reset all values and pass uend to u0) 

167 self.restart_block(active_slots, time, uend) 

168 

169 # call post-run hook 

170 for S in self.MS: 

171 for hook in self.hooks: 

172 hook.post_run(step=S, level_number=0) 

173 

174 return uend, self.return_stats() 

175 

176 def restart_block(self, active_slots, time, u0): 

177 """ 

178 Helper routine to reset/restart block of (active) steps 

179 

180 Args: 

181 active_slots: list of active steps 

182 time: list of new times 

183 u0: initial value to distribute across the steps 

184 

185 """ 

186 

187 # loop over active slots (not directly, since we need the previous entry as well) 

188 for j in range(len(active_slots)): 

189 # get slot number 

190 p = active_slots[j] 

191 

192 # store current slot number for diagnostics 

193 self.MS[p].status.slot = p 

194 # store link to previous step 

195 self.MS[p].prev = self.MS[active_slots[j - 1]] 

196 # resets step 

197 self.MS[p].reset_step() 

198 # determine whether I am the first and/or last in line 

199 self.MS[p].status.first = active_slots.index(p) == 0 

200 self.MS[p].status.last = active_slots.index(p) == len(active_slots) - 1 

201 # initialize step with u0 

202 self.MS[p].init_step(u0) 

203 # reset some values 

204 self.MS[p].status.done = False 

205 self.MS[p].status.prev_done = False 

206 self.MS[p].status.iter = 0 

207 self.MS[p].status.stage = 'SPREAD' 

208 self.MS[p].status.force_done = False 

209 self.MS[p].status.time_size = len(active_slots) 

210 

211 for l in self.MS[p].levels: 

212 l.tag = None 

213 l.status.sweep = 1 

214 

215 for p in active_slots: 

216 for lvl in self.MS[p].levels: 

217 lvl.status.time = time[p] 

218 

219 for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: 

220 C.reset_status_variables(self, active_slots=active_slots) 

221 

222 def send_full(self, S, level=None, add_to_stats=False): 

223 """ 

224 Function to perform the send, including bookkeeping and logging 

225 

226 Args: 

227 S: the current step 

228 level: the level number 

229 add_to_stats: a flag to end recording data in the hooks (defaults to False) 

230 """ 

231 

232 def send(source, tag): 

233 """ 

234 Send function 

235 

236 Args: 

237 source: level which has the new values 

238 tag: identifier for this message 

239 """ 

240 # sending here means computing uend ("one-sided communication") 

241 source.sweep.compute_end_point() 

242 source.tag = cp.deepcopy(tag) 

243 

244 for hook in self.hooks: 

245 hook.pre_comm(step=S, level_number=level) 

246 if not S.status.last: 

247 self.logger.debug( 

248 'Process %2i provides data on level %2i with tag %s' % (S.status.slot, level, S.status.iter) 

249 ) 

250 send(S.levels[level], tag=(level, S.status.iter, S.status.slot)) 

251 

252 for hook in self.hooks: 

253 hook.post_comm(step=S, level_number=level, add_to_stats=add_to_stats) 

254 

255 def recv_full(self, S, level=None, add_to_stats=False): 

256 """ 

257 Function to perform the recv, including bookkeeping and logging 

258 

259 Args: 

260 S: the current step 

261 level: the level number 

262 add_to_stats: a flag to end recording data in the hooks (defaults to False) 

263 """ 

264 

265 def recv(target, source, tag=None): 

266 """ 

267 Receive function 

268 

269 Args: 

270 target: level which will receive the values 

271 source: level which initiated the send 

272 tag: identifier to check if this message is really for me 

273 """ 

274 

275 if tag is not None and source.tag != tag: 

276 raise CommunicationError('source and target tag are not the same, got %s and %s' % (source.tag, tag)) 

277 # simply do a deepcopy of the values uend to become the new u0 at the target 

278 target.u[0] = target.prob.dtype_u(source.uend) 

279 # re-evaluate f on left interval boundary 

280 target.f[0] = target.prob.eval_f(target.u[0], target.time) 

281 

282 for hook in self.hooks: 

283 hook.pre_comm(step=S, level_number=level) 

284 if not S.status.prev_done and not S.status.first: 

285 self.logger.debug( 

286 'Process %2i receives from %2i on level %2i with tag %s' 

287 % (S.status.slot, S.prev.status.slot, level, S.status.iter) 

288 ) 

289 recv(S.levels[level], S.prev.levels[level], tag=(level, S.status.iter, S.prev.status.slot)) 

290 for hook in self.hooks: 

291 hook.post_comm(step=S, level_number=level, add_to_stats=add_to_stats) 

292 

293 def pfasst(self, local_MS_active): 

294 """ 

295 Main function including the stages of SDC, MLSDC and PFASST (the "controller") 

296 

297 For the workflow of this controller, check out one of our PFASST talks or the pySDC paper 

298 

299 This method changes self.MS directly by accessing active steps through local_MS_active. Nothing is returned. 

300 

301 Args: 

302 local_MS_active (list): all active steps 

303 """ 

304 

305 # if all stages are the same (or DONE), continue, otherwise abort 

306 stages = [S.status.stage for S in local_MS_active if S.status.stage != 'DONE'] 

307 if stages[1:] == stages[:-1]: 

308 stage = stages[0] 

309 else: 

310 raise ControllerError('not all stages are equal') 

311 

312 self.logger.debug(stage) 

313 

314 MS_running = [S for S in local_MS_active if S.status.stage != 'DONE'] 

315 

316 switcher = { 

317 'SPREAD': self.spread, 

318 'PREDICT': self.predict, 

319 'IT_CHECK': self.it_check, 

320 'IT_FINE': self.it_fine, 

321 'IT_DOWN': self.it_down, 

322 'IT_COARSE': self.it_coarse, 

323 'IT_UP': self.it_up, 

324 } 

325 

326 switcher.get(stage, self.default)(MS_running) 

327 

328 return all(S.status.done for S in local_MS_active) 

329 

330 def spread(self, local_MS_running): 

331 """ 

332 Spreading phase 

333 

334 Args: 

335 local_MS_running (list): list of currently running steps 

336 """ 

337 

338 for S in local_MS_running: 

339 # first stage: spread values 

340 for hook in self.hooks: 

341 hook.pre_step(step=S, level_number=0) 

342 

343 # call predictor from sweeper 

344 S.levels[0].sweep.predict() 

345 

346 # update stage 

347 if len(S.levels) > 1: # MLSDC or PFASST with predict 

348 S.status.stage = 'PREDICT' 

349 else: 

350 S.status.stage = 'IT_CHECK' 

351 

352 for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: 

353 C.post_spread_processing(self, S, MS=local_MS_running) 

354 

355 def predict(self, local_MS_running): 

356 """ 

357 Predictor phase 

358 

359 Args: 

360 local_MS_running (list): list of currently running steps 

361 """ 

362 

363 for S in local_MS_running: 

364 for hook in self.hooks: 

365 hook.pre_predict(step=S, level_number=0) 

366 

367 if self.params.predict_type is None: 

368 pass 

369 

370 elif self.params.predict_type == 'fine_only': 

371 # do a fine sweep only 

372 for S in local_MS_running: 

373 S.levels[0].sweep.update_nodes() 

374 

375 # elif self.params.predict_type == 'libpfasst_style': 

376 # 

377 # # loop over all steps 

378 # for S in local_MS_running: 

379 # 

380 # # restrict to coarsest level 

381 # for l in range(1, len(S.levels)): 

382 # S.transfer(source=S.levels[l - 1], target=S.levels[l]) 

383 # 

384 # # run in serial on coarse level 

385 # for S in local_MS_running: 

386 # 

387 # self.hooks.pre_comm(step=S, level_number=len(S.levels) - 1) 

388 # # receive from previous step (if not first) 

389 # if not S.status.first: 

390 # self.logger.debug('Process %2i receives from %2i on level %2i with tag %s -- PREDICT' % 

391 # (S.status.slot, S.prev.status.slot, len(S.levels) - 1, 0)) 

392 # self.recv(S.levels[-1], S.prev.levels[-1], tag=(len(S.levels), 0, S.prev.status.slot)) 

393 # self.hooks.post_comm(step=S, level_number=len(S.levels) - 1) 

394 # 

395 # # do the coarse sweep 

396 # S.levels[-1].sweep.update_nodes() 

397 # 

398 # self.hooks.pre_comm(step=S, level_number=len(S.levels) - 1) 

399 # # send to succ step 

400 # if not S.status.last: 

401 # self.logger.debug('Process %2i provides data on level %2i with tag %s -- PREDICT' 

402 # % (S.status.slot, len(S.levels) - 1, 0)) 

403 # self.send(S.levels[-1], tag=(len(S.levels), 0, S.status.slot)) 

404 # self.hooks.post_comm(step=S, level_number=len(S.levels) - 1, add_to_stats=True) 

405 # 

406 # # go back to fine level, sweeping 

407 # for l in range(self.nlevels - 1, 0, -1): 

408 # 

409 # for S in local_MS_running: 

410 # # prolong values 

411 # S.transfer(source=S.levels[l], target=S.levels[l - 1]) 

412 # 

413 # if l - 1 > 0: 

414 # S.levels[l - 1].sweep.update_nodes() 

415 # 

416 # # end with a fine sweep 

417 # for S in local_MS_running: 

418 # S.levels[0].sweep.update_nodes() 

419 

420 elif self.params.predict_type == 'pfasst_burnin': 

421 # loop over all steps 

422 for S in local_MS_running: 

423 # restrict to coarsest level 

424 for l in range(1, len(S.levels)): 

425 S.transfer(source=S.levels[l - 1], target=S.levels[l]) 

426 

427 # loop over all steps 

428 for q in range(len(local_MS_running)): 

429 # loop over last steps: [1,2,3,4], [2,3,4], [3,4], [4] 

430 for p in range(q, len(local_MS_running)): 

431 S = local_MS_running[p] 

432 

433 # do the sweep with new values 

434 S.levels[-1].sweep.update_nodes() 

435 

436 # send updated values on coarsest level 

437 self.send_full(S, level=len(S.levels) - 1) 

438 

439 # loop over last steps: [2,3,4], [3,4], [4] 

440 for p in range(q + 1, len(local_MS_running)): 

441 S = local_MS_running[p] 

442 # receive values sent during previous sweep 

443 self.recv_full(S, level=len(S.levels) - 1, add_to_stats=(p == len(local_MS_running) - 1)) 

444 

445 # loop over all steps 

446 for S in local_MS_running: 

447 # interpolate back to finest level 

448 for l in range(len(S.levels) - 1, 0, -1): 

449 S.transfer(source=S.levels[l], target=S.levels[l - 1]) 

450 

451 # send updated values forward 

452 self.send_full(S, level=0) 

453 # receive values 

454 self.recv_full(S, level=0) 

455 

456 # end this with a fine sweep 

457 for S in local_MS_running: 

458 S.levels[0].sweep.update_nodes() 

459 

460 elif self.params.predict_type == 'fmg': 

461 # TODO: implement FMG predictor 

462 raise NotImplementedError('FMG predictor is not yet implemented') 

463 

464 else: 

465 raise ControllerError('Wrong predictor type, got %s' % self.params.predict_type) 

466 

467 for S in local_MS_running: 

468 for hook in self.hooks: 

469 hook.post_predict(step=S, level_number=0) 

470 

471 for S in local_MS_running: 

472 # update stage 

473 S.status.stage = 'IT_CHECK' 

474 

475 def it_check(self, local_MS_running): 

476 """ 

477 Key routine to check for convergence/termination 

478 

479 Args: 

480 local_MS_running (list): list of currently running steps 

481 """ 

482 

483 for S in local_MS_running: 

484 # send updated values forward 

485 self.send_full(S, level=0) 

486 # receive values 

487 self.recv_full(S, level=0) 

488 # compute current residual 

489 S.levels[0].sweep.compute_residual(stage='IT_CHECK') 

490 

491 for S in local_MS_running: 

492 if S.status.iter > 0: 

493 for hook in self.hooks: 

494 hook.post_iteration(step=S, level_number=0) 

495 

496 # decide if the step is done, needs to be restarted and other things convergence related 

497 for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: 

498 C.post_iteration_processing(self, S, MS=local_MS_running) 

499 C.convergence_control(self, S, MS=local_MS_running) 

500 

501 for S in local_MS_running: 

502 if not S.status.first: 

503 for hook in self.hooks: 

504 hook.pre_comm(step=S, level_number=0) 

505 S.status.prev_done = S.prev.status.done # "communicate" 

506 for hook in self.hooks: 

507 hook.post_comm(step=S, level_number=0, add_to_stats=True) 

508 S.status.done = S.status.done and S.status.prev_done 

509 

510 if self.params.all_to_done: 

511 for hook in self.hooks: 

512 hook.pre_comm(step=S, level_number=0) 

513 S.status.done = all(T.status.done for T in local_MS_running) 

514 for hook in self.hooks: 

515 hook.post_comm(step=S, level_number=0, add_to_stats=True) 

516 

517 if not S.status.done: 

518 # increment iteration count here (and only here) 

519 S.status.iter += 1 

520 for hook in self.hooks: 

521 hook.pre_iteration(step=S, level_number=0) 

522 for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: 

523 C.pre_iteration_processing(self, S, MS=local_MS_running) 

524 

525 if len(S.levels) > 1: # MLSDC or PFASST 

526 S.status.stage = 'IT_DOWN' 

527 else: # SDC or MSSDC 

528 if len(local_MS_running) == 1 or self.params.mssdc_jac: # SDC or parallel MSSDC (Jacobi-like) 

529 S.status.stage = 'IT_FINE' 

530 else: 

531 S.status.stage = 'IT_COARSE' # serial MSSDC (Gauss-like) 

532 else: 

533 S.levels[0].sweep.compute_end_point() 

534 for hook in self.hooks: 

535 hook.post_step(step=S, level_number=0) 

536 S.status.stage = 'DONE' 

537 

538 for C in [self.convergence_controllers[i] for i in self.convergence_controller_order]: 

539 C.reset_buffers_nonMPI(self) 

540 

541 def it_fine(self, local_MS_running): 

542 """ 

543 Fine sweeps 

544 

545 Args: 

546 local_MS_running (list): list of currently running steps 

547 """ 

548 

549 for S in local_MS_running: 

550 S.levels[0].status.sweep = 0 

551 

552 for k in range(self.nsweeps[0]): 

553 for S in local_MS_running: 

554 S.levels[0].status.sweep += 1 

555 

556 for S in local_MS_running: 

557 # send updated values forward 

558 self.send_full(S, level=0) 

559 # receive values 

560 self.recv_full(S, level=0, add_to_stats=(k == self.nsweeps[0] - 1)) 

561 

562 for S in local_MS_running: 

563 # standard sweep workflow: update nodes, compute residual, log progress 

564 for hook in self.hooks: 

565 hook.pre_sweep(step=S, level_number=0) 

566 S.levels[0].sweep.update_nodes() 

567 S.levels[0].sweep.compute_residual(stage='IT_FINE') 

568 for hook in self.hooks: 

569 hook.post_sweep(step=S, level_number=0) 

570 

571 for S in local_MS_running: 

572 # update stage 

573 S.status.stage = 'IT_CHECK' 

574 

575 def it_down(self, local_MS_running): 

576 """ 

577 Go down the hierarchy from finest to coarsest level 

578 

579 Args: 

580 local_MS_running (list): list of currently running steps 

581 """ 

582 

583 for S in local_MS_running: 

584 S.transfer(source=S.levels[0], target=S.levels[1]) 

585 

586 for l in range(1, self.nlevels - 1): 

587 # sweep on middle levels (not on finest, not on coarsest, though) 

588 

589 for _ in range(self.nsweeps[l]): 

590 for S in local_MS_running: 

591 # send updated values forward 

592 self.send_full(S, level=l) 

593 # receive values 

594 self.recv_full(S, level=l) 

595 

596 for S in local_MS_running: 

597 for hook in self.hooks: 

598 hook.pre_sweep(step=S, level_number=l) 

599 S.levels[l].sweep.update_nodes() 

600 S.levels[l].sweep.compute_residual(stage='IT_DOWN') 

601 for hook in self.hooks: 

602 hook.post_sweep(step=S, level_number=l) 

603 

604 for S in local_MS_running: 

605 # transfer further down the hierarchy 

606 S.transfer(source=S.levels[l], target=S.levels[l + 1]) 

607 

608 for S in local_MS_running: 

609 # update stage 

610 S.status.stage = 'IT_COARSE' 

611 

612 def it_coarse(self, local_MS_running): 

613 """ 

614 Coarse sweep 

615 

616 Args: 

617 local_MS_running (list): list of currently running steps 

618 """ 

619 

620 for S in local_MS_running: 

621 # receive from previous step (if not first) 

622 self.recv_full(S, level=len(S.levels) - 1) 

623 

624 # do the sweep 

625 for hook in self.hooks: 

626 hook.pre_sweep(step=S, level_number=len(S.levels) - 1) 

627 S.levels[-1].sweep.update_nodes() 

628 S.levels[-1].sweep.compute_residual(stage='IT_COARSE') 

629 for hook in self.hooks: 

630 hook.post_sweep(step=S, level_number=len(S.levels) - 1) 

631 

632 # send to succ step 

633 self.send_full(S, level=len(S.levels) - 1, add_to_stats=True) 

634 

635 # update stage 

636 if len(S.levels) > 1: # MLSDC or PFASST 

637 S.status.stage = 'IT_UP' 

638 else: # MSSDC 

639 S.status.stage = 'IT_CHECK' 

640 

641 def it_up(self, local_MS_running): 

642 """ 

643 Prolong corrections up to finest level (parallel) 

644 

645 Args: 

646 local_MS_running (list): list of currently running steps 

647 """ 

648 

649 for l in range(self.nlevels - 1, 0, -1): 

650 for S in local_MS_running: 

651 # prolong values 

652 S.transfer(source=S.levels[l], target=S.levels[l - 1]) 

653 

654 # on middle levels: do communication and sweep as usual 

655 if l - 1 > 0: 

656 for k in range(self.nsweeps[l - 1]): 

657 for S in local_MS_running: 

658 # send updated values forward 

659 self.send_full(S, level=l - 1) 

660 # receive values 

661 self.recv_full(S, level=l - 1, add_to_stats=(k == self.nsweeps[l - 1] - 1)) 

662 

663 for S in local_MS_running: 

664 for hook in self.hooks: 

665 hook.pre_sweep(step=S, level_number=l - 1) 

666 S.levels[l - 1].sweep.update_nodes() 

667 S.levels[l - 1].sweep.compute_residual(stage='IT_UP') 

668 for hook in self.hooks: 

669 hook.post_sweep(step=S, level_number=l - 1) 

670 

671 for S in local_MS_running: 

672 # update stage 

673 S.status.stage = 'IT_FINE' 

674 

675 def default(self, local_MS_running): 

676 """ 

677 Default routine to catch wrong status 

678 

679 Args: 

680 local_MS_running (list): list of currently running steps 

681 """ 

682 raise ControllerError('Unknown stage, got %s' % local_MS_running[0].status.stage) # TODO