Coverage for pySDC/projects/TOMS/pySDC_with_PETSc.py: 0%
83 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import sys
3import numpy as np
4from mpi4py import MPI
6from pySDC.helpers.stats_helper import get_sorted
8from pySDC.implementations.controller_classes.controller_MPI import controller_MPI
9from pySDC.implementations.problem_classes.HeatEquation_2D_PETSc_forced import heat2d_petsc_forced
10from pySDC.implementations.sweeper_classes.imex_1st_order import imex_1st_order
11from pySDC.implementations.transfer_classes.TransferPETScDMDA import mesh_to_mesh_petsc_dmda
14def main():
15 """
16 Program to demonstrate usage of PETSc data structures and spatial parallelization,
17 combined with parallelization in time.
18 """
19 # set MPI communicator
20 comm = MPI.COMM_WORLD
22 world_rank = comm.Get_rank()
23 world_size = comm.Get_size()
25 # split world communicator to create space-communicators
26 if len(sys.argv) >= 2:
27 color = int(world_rank / int(sys.argv[1]))
28 else:
29 color = int(world_rank / 1)
30 space_comm = comm.Split(color=color)
31 space_size = space_comm.Get_size()
32 space_rank = space_comm.Get_rank()
34 # split world communicator to create time-communicators
35 if len(sys.argv) >= 2:
36 color = int(world_rank % int(sys.argv[1]))
37 else:
38 color = int(world_rank / world_size)
39 time_comm = comm.Split(color=color)
40 time_size = time_comm.Get_size()
41 time_rank = time_comm.Get_rank()
43 print(
44 "IDs (world, space, time): %i / %i -- %i / %i -- %i / %i"
45 % (world_rank, world_size, space_rank, space_size, time_rank, time_size)
46 )
48 # initialize level parameters
49 level_params = dict()
50 level_params['restol'] = 1e-08
51 level_params['dt'] = 0.125
52 level_params['nsweeps'] = [3, 1]
54 # initialize sweeper parameters
55 sweeper_params = dict()
56 sweeper_params['quad_type'] = 'RADAU-RIGHT'
57 sweeper_params['num_nodes'] = [5]
58 sweeper_params['QI'] = ['LU'] # For the IMEX sweeper, the LU-trick can be activated for the implicit part
59 sweeper_params['initial_guess'] = 'zero'
61 # initialize problem parameters
62 problem_params = dict()
63 problem_params['nu'] = 1.0 # diffusion coefficient
64 problem_params['freq'] = 2 # frequency for the test value
65 problem_params['cnvars'] = [(129, 129)] # number of degrees of freedom on coarse level
66 problem_params['refine'] = [1, 0] # number of refinements
67 problem_params['comm'] = space_comm # pass space-communicator to problem class
68 problem_params['sol_tol'] = 1e-10 # set tolerance to PETSc' linear solver
70 # initialize step parameters
71 step_params = dict()
72 step_params['maxiter'] = 50
74 # initialize space transfer parameters
75 space_transfer_params = dict()
76 space_transfer_params['rorder'] = 2
77 space_transfer_params['iorder'] = 2
78 space_transfer_params['periodic'] = False
80 # initialize controller parameters
81 controller_params = dict()
82 controller_params['logger_level'] = 20 if space_rank == 0 else 99 # set level depending on rank
83 controller_params['dump_setup'] = False
85 # fill description dictionary for easy step instantiation
86 description = dict()
87 description['problem_class'] = heat2d_petsc_forced # pass problem class
88 description['problem_params'] = problem_params # pass problem parameters
89 description['sweeper_class'] = imex_1st_order # pass sweeper (see part B)
90 description['sweeper_params'] = sweeper_params # pass sweeper parameters
91 description['level_params'] = level_params # pass level parameters
92 description['step_params'] = step_params # pass step parameters
93 description['space_transfer_class'] = mesh_to_mesh_petsc_dmda # pass spatial transfer class
94 description['space_transfer_params'] = space_transfer_params # pass paramters for spatial transfer
96 # set time parameters
97 t0 = 0.0
98 Tend = 3.0
100 # instantiate controller
101 controller = controller_MPI(controller_params=controller_params, description=description, comm=time_comm)
103 # get initial values on finest level
104 P = controller.S.levels[0].prob
105 uinit = P.u_exact(t0)
107 # call main function to get things done...
108 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend)
110 # compute exact solution and compare
111 uex = P.u_exact(Tend)
112 err = abs(uex - uend)
114 # filter statistics by type (number of iterations)
115 iter_counts = get_sorted(stats, type='niter', sortby='time')
117 niters = np.array([item[1] for item in iter_counts])
119 # limit output to space-rank 0 (as before when setting the logger level)
120 if space_rank == 0:
121 out = 'This is time-rank %i...' % time_rank
122 print(out)
124 # compute and print statistics
125 for item in iter_counts:
126 out = 'Number of iterations for time %4.2f: %2i' % item
127 print(out)
129 out = ' Mean number of iterations: %4.2f' % np.mean(niters)
130 print(out)
131 out = ' Range of values for number of iterations: %2i ' % np.ptp(niters)
132 print(out)
133 out = ' Position of max/min number of iterations: %2i -- %2i' % (
134 int(np.argmax(niters)),
135 int(np.argmin(niters)),
136 )
137 print(out)
138 out = ' Std and var for number of iterations: %4.2f -- %4.2f' % (float(np.std(niters)), float(np.var(niters)))
139 print(out)
141 print(' Iteration count linear solver: %i' % P.ksp_itercount)
142 print(' Mean Iteration count per call: %4.2f' % (P.ksp_itercount / max(P.ksp_ncalls, 1)))
144 timing = get_sorted(stats, type='timing_run', sortby='time')
146 out = 'Time to solution: %6.4f sec.' % timing[0][1]
147 print(out)
148 out = 'Error vs. PDE solution: %6.4e' % err
149 print(out)
151 space_comm.Free()
152 time_comm.Free()
155if __name__ == "__main__":
156 main()