Coverage for pySDC/implementations/convergence_controller_classes/spread_step_sizes.py: 100%

61 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-09 14:59 +0000

1import numpy as np 

2from pySDC.core.convergence_controller import ConvergenceController 

3 

4 

5class SpreadStepSizesBlockwise(ConvergenceController): 

6 """ 

7 Take the step size from the last step in the block and spread it to all steps in the next block such that every step 

8 in a block always has the same step size. 

9 By block we refer to a composite collocation problem, which is solved in pipelined SDC parallel-in-time. 

10 

11 Also, we overrule the step size control here, if we get close to the final time and we would take too large of a 

12 step otherwise. 

13 """ 

14 

15 def setup(self, controller, params, description, **kwargs): 

16 """ 

17 Define parameters here 

18 

19 Args: 

20 controller (pySDC.Controller): The controller 

21 params (dict): The params passed for this specific convergence controller 

22 description (dict): The description object used to instantiate the controller 

23 

24 Returns: 

25 (dict): The updated params dictionary 

26 """ 

27 defaults = { 

28 "control_order": +100, 

29 "spread_from_first_restarted": True, 

30 "overwrite_to_reach_Tend": True, 

31 } 

32 

33 return {**defaults, **super().setup(controller, params, description, **kwargs)} 

34 

35 @classmethod 

36 def get_implementation(cls, useMPI, **kwargs): 

37 """ 

38 Get MPI or non-MPI version 

39 

40 Args: 

41 useMPI (bool): The implementation that you want 

42 

43 Returns: 

44 cls: The child class implementing the desired flavor 

45 """ 

46 if useMPI: 

47 return SpreadStepSizesBlockwiseMPI 

48 else: 

49 return SpreadStepSizesBlockwiseNonMPI 

50 

51 def get_step_from_which_to_spread(self, restarts, new_steps, size, S): 

52 """ 

53 Return the index of the step from which to spread the step size to all steps in the next block. 

54 

55 Args: 

56 restarts (list): List of booleans for each step, showing if it wants to be restarted 

57 new_steps (list): List of the new step sizes on the finest level of each step 

58 size (int): Size of the time communicator 

59 S (pySDC.Step.step): The current step 

60 

61 Returns: 

62 int: The index of the step from which we want to spread the step size 

63 """ 

64 if True in restarts: 

65 restart_at = np.where(restarts)[0][0] 

66 if self.params.spread_from_first_restarted: 

67 spread_from_step = restart_at 

68 else: 

69 # we want to spread the smallest step size out of the steps that want to be restarted 

70 spread_from_step = restart_at + np.argmin(new_steps[restart_at:]) 

71 self.debug( 

72 f'Detected restart from step {restart_at}. Spreading step size from step {spread_from_step}: {new_steps[restart_at]:.2e}.', 

73 S, 

74 ) 

75 else: 

76 restart_at = size - 1 

77 spread_from_step = restart_at 

78 self.debug(f'Spreading step size from last step: {new_steps[restart_at]:.2e}.', S) 

79 

80 return spread_from_step, restart_at 

81 

82 

83class SpreadStepSizesBlockwiseNonMPI(SpreadStepSizesBlockwise): 

84 """ 

85 Non-MPI version 

86 """ 

87 

88 def get_step_from_which_to_spread(self, MS, S): 

89 """ 

90 Return the index of the step from which to spread the step size to all steps in the next block. 

91 

92 Args: 

93 MS (list): Active steps 

94 S (pySDC.Step.step): The current step 

95 

96 Returns: 

97 int: The index of the step from which we want to spread the step size 

98 """ 

99 restarts = [me.status.restart for me in MS] 

100 new_steps = [me.levels[0].status.dt_new if me.levels[0].status.dt_new else 1e9 for me in MS] 

101 return super().get_step_from_which_to_spread(restarts, new_steps, len(MS), S) 

102 

103 def prepare_next_block(self, controller, S, size, time, Tend, MS, **kwargs): 

104 """ 

105 Spread the step size of the last step with no restarted predecessors to all steps and limit the step size based 

106 on Tend 

107 

108 Args: 

109 controller (pySDC.Controller): The controller 

110 S (pySDC.step): The current step 

111 size (int): The number of ranks 

112 time (list): List containing the time of all the steps handled by the controller (or float in MPI implementation) 

113 Tend (float): Final time of the simulation 

114 MS (list): Active steps 

115 

116 Returns: 

117 None 

118 """ 

119 # inactive steps don't need to participate 

120 if S not in MS: 

121 return None 

122 

123 spread_from_step, restart_at = self.get_step_from_which_to_spread(MS, S) 

124 

125 # Compute the maximum allowed step size based on Tend. 

126 dt_all = [0.0] + [me.dt for me in MS if not me.status.first] 

127 dt_max = ( 

128 (Tend - time[restart_at] - dt_all[restart_at]) / size if self.params.overwrite_to_reach_Tend else np.inf 

129 ) 

130 

131 # record the step sizes to restart with from all the levels of the step 

132 new_steps = [None] * len(S.levels) 

133 for i in range(len(MS[spread_from_step].levels)): 

134 l = MS[spread_from_step].levels[i] 

135 # overrule the step size control to reach Tend if needed 

136 new_steps[i] = min( 

137 [ 

138 l.status.dt_new if l.status.dt_new is not None else l.params.dt, 

139 max([dt_max, l.params.dt_initial]), 

140 ] 

141 ) 

142 if ( 

143 new_steps[i] < (l.status.dt_new if l.status.dt_new is not None else l.params.dt) 

144 and i == 0 

145 and l.status.dt_new is not None 

146 ): 

147 self.log( 

148 f"Overwriting stepsize control to reach Tend: {Tend:.2e}! New step size: {new_steps[i]:.2e}", S 

149 ) 

150 

151 # spread the step sizes to all levels 

152 for i in range(len(S.levels)): 

153 S.levels[i].params.dt = new_steps[i] 

154 

155 return None 

156 

157 

158class SpreadStepSizesBlockwiseMPI(SpreadStepSizesBlockwise): 

159 """ 

160 MPI version 

161 """ 

162 

163 def get_step_from_which_to_spread(self, comm, S): 

164 """ 

165 Return the index of the step from which to spread the step size to all steps in the next block. 

166 

167 Args: 

168 comm (mpi4py.MPI.Intracomm): Communicator 

169 S (pySDC.Step.step): The current step 

170 

171 Returns: 

172 int: The index of the step from which we want to spread the step size 

173 """ 

174 restarts = comm.allgather(S.status.restart) 

175 new_steps = [me if me is not None else 1e9 for me in comm.allgather(S.levels[0].status.dt_new)] 

176 

177 return super().get_step_from_which_to_spread(restarts, new_steps, comm.size, S) 

178 

179 def prepare_next_block(self, controller, S, size, time, Tend, comm, **kwargs): 

180 """ 

181 Spread the step size of the last step with no restarted predecessors to all steps and limit the step size based 

182 on Tend 

183 

184 Args: 

185 controller (pySDC.Controller): The controller 

186 S (pySDC.step): The current step 

187 size (int): The number of ranks 

188 time (float): Time of the first step 

189 Tend (float): Final time of the simulation 

190 comm (mpi4py.MPI.Intracomm): Communicator 

191 

192 Returns: 

193 None 

194 """ 

195 spread_from_step, restart_at = self.get_step_from_which_to_spread(comm, S) 

196 

197 # Compute the maximum allowed step size based on Tend. 

198 dt_max = comm.bcast((Tend - time) / size, root=restart_at) if self.params.overwrite_to_reach_Tend else np.inf 

199 

200 # record the step sizes to restart with from all the levels of the step 

201 new_steps = [None] * len(S.levels) 

202 if S.status.slot == spread_from_step: 

203 for i in range(len(S.levels)): 

204 l = S.levels[i] 

205 # overrule the step size control to reach Tend if needed 

206 new_steps[i] = min( 

207 [ 

208 l.status.dt_new if l.status.dt_new is not None else l.params.dt, 

209 max([dt_max, l.params.dt_initial]), 

210 ] 

211 ) 

212 

213 if ( 

214 new_steps[i] < l.status.dt_new 

215 if l.status.dt_new is not None 

216 else l.params.dt and l.status.dt_new is not None 

217 ): 

218 self.log( 

219 f"Overwriting stepsize control to reach Tend: {Tend:.2e}! New step size: {new_steps[i]:.2e}", S 

220 ) 

221 new_steps = comm.bcast(new_steps, root=spread_from_step) 

222 

223 # spread the step sizes to all levels 

224 for i in range(len(S.levels)): 

225 S.levels[i].params.dt = new_steps[i] 

226 

227 return None