Coverage for pySDC/projects/Monodomain/problem_classes/MonodomainODE.py: 95%

186 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-19 09:13 +0000

1from pathlib import Path 

2import logging 

3import numpy as np 

4from pySDC.core.problem import Problem 

5from pySDC.implementations.datatype_classes.mesh import mesh 

6from pySDC.projects.Monodomain.datatype_classes.my_mesh import imexexp_mesh 

7from pySDC.projects.Monodomain.problem_classes.space_discretizazions.Parabolic_DCT import Parabolic_DCT 

8import pySDC.projects.Monodomain.problem_classes.ionicmodels.cpp as ionicmodels 

9 

10 

11class MonodomainODE(Problem): 

12 """ 

13 A class for the discretization of the Monodomain equation. The Monodomain equation is a parabolic PDE composed of 

14 a reaction-diffusion equation coupled with an ODE system. The unknowns are the potential V and the ionic model variables (g_1,...,g_N). 

15 The reaction-diffusion equation is discretized in another class, where any spatial discretization can be used. 

16 The ODE system is the ionic model, which doesn't need spatial discretization, being a system of ODEs. 

17 

18 

19 

20 Attributes: 

21 ----------- 

22 parabolic: The parabolic problem class used to discretize the reaction-diffusion equation 

23 ionic_model: The ionic model used to discretize the ODE system. This is a wrapper around the actual ionic model, which is written in C++. 

24 size: The number of variables in the ionic model 

25 vector_type: The type of vector used to store a single unknown (e.g. V). This data type depends on spatial discretization, hence on the parabolic class. 

26 dtype_u: The type of vector used to store all the unknowns (V,g_1,...,g_N). This is a vector of vector_type. 

27 dtype_f: The type of vector used to store the right-hand side of the ODE system stemming from the monodomain equation. This is a vector of vector_type. 

28 output_folder: The folder where the solution is written to file 

29 t0: The initial simulation time. This is 0.0 by default but can be changed by the user in order to skip the initial stimulus. 

30 Tend: The duration of the simulation. 

31 output_V_only: If True, only the potential V is written to file. If False, all the ionic model variables are written to file. 

32 read_init_val: If True, the initial value is read from file. If False, the initial value is at equilibrium. 

33 """ 

34 

35 dtype_u = mesh 

36 dtype_f = mesh 

37 

38 def __init__(self, **problem_params): 

39 self.logger = logging.getLogger("step") 

40 

41 self.parabolic = Parabolic_DCT(**problem_params) 

42 

43 self.define_ionic_model(problem_params["ionic_model_name"]) 

44 

45 self.init = ((self.size, *self.parabolic.init[0]), self.parabolic.init[1], self.parabolic.init[2]) 

46 

47 # invoke super init 

48 super(MonodomainODE, self).__init__(self.init) 

49 # store all problem params dictionary values as attributes 

50 self._makeAttributeAndRegister(*problem_params.keys(), localVars=problem_params, readOnly=True) 

51 

52 self.define_stimulus() 

53 

54 # initial and end time 

55 self.t0 = 0.0 

56 self.Tend = 50.0 if self.end_time < 0.0 else self.end_time 

57 

58 # init output stuff 

59 self.output_folder = ( 

60 Path(self.output_root) 

61 / Path(self.parabolic.domain_name) 

62 / Path(self.parabolic.mesh_name) 

63 / Path(self.ionic_model_name) 

64 ) 

65 self.parabolic.init_output(self.output_folder) 

66 

67 def init_exp_extruded(self, new_dim_shape): 

68 # The info needed to initialize a new vector of size (M,N) where M is the number of variables in the 

69 # ionic model with exponential terms and N is the number of dofs in the mesh. 

70 # The vector is further extruded to additional dimensions with shape new_dim_shape. 

71 return ((*new_dim_shape, len(self.rhs_exp_indeces), self.init[0][1]), self.init[1], self.init[2]) 

72 

73 def write_solution(self, uh, t): 

74 # write solution to file, only the potential V=uh[0], not the ionic model variables 

75 self.parabolic.write_solution(uh[0], t) 

76 

77 def write_reference_solution(self, uh, all=False): 

78 # write solution to file, only the potential V=uh[0] or all variables if all=True 

79 self.parabolic.write_reference_solution(uh, list(range(self.size)) if all else [0]) 

80 

81 def read_reference_solution(self, uh, ref_file_name, all=False): 

82 # read solution from file, only the potential V=uh[0] or all variables if all=True 

83 # returns true if read was successful, false else 

84 return self.parabolic.read_reference_solution(uh, list(range(self.size)) if all else [0], ref_file_name) 

85 

86 def initial_value(self): 

87 # Create initial value. Every variable is constant in space 

88 u0 = self.dtype_u(self.init) 

89 init_vals = self.ionic_model.initial_values() 

90 for i in range(self.size): 

91 u0[i][:] = init_vals[i] 

92 

93 # overwrite the initial value with solution from file if desired 

94 if self.read_init_val: 

95 read_ok = self.read_reference_solution(u0, self.init_val_name, True) 

96 assert read_ok, "ERROR: Could not read initial value from file." 

97 

98 return u0 

99 

100 def compute_errors(self, uh): 

101 """ 

102 Compute L2 error of uh[0] (potential V) 

103 Args: 

104 uh (VectorOfVectors): solution as vector of vectors 

105 

106 Returns: 

107 computed (bool): if error computation was successful 

108 error (float): L2 error 

109 rel_error (float): relative L2 error 

110 """ 

111 ref_sol_V = self.dtype_u(init=self.init, val=0.0) 

112 read_ok = self.read_reference_solution(ref_sol_V, self.ref_sol, False) 

113 if read_ok: 

114 error_L2, rel_error_L2 = self.parabolic.compute_errors(uh[0], ref_sol_V[0]) 

115 

116 print(f"L2-errors: {error_L2}") 

117 print(f"Relative L2-errors: {rel_error_L2}") 

118 

119 return True, error_L2, rel_error_L2 

120 else: 

121 return False, 0.0, 0.0 

122 

123 def define_ionic_model(self, ionic_model_name): 

124 self.scale_Iion = 0.01 # used to convert currents in uA/cm^2 to uA/mm^2 

125 # scale_im is applied to the rhs of the ionic model, so that the rhs is in units of mV/ms 

126 self.scale_im = self.scale_Iion / self.parabolic.Cm 

127 

128 if ionic_model_name in ["HodgkinHuxley", "HH"]: 

129 self.ionic_model = ionicmodels.HodgkinHuxley(self.scale_im) 

130 elif ionic_model_name in ["Courtemanche1998", "CRN"]: 

131 self.ionic_model = ionicmodels.Courtemanche1998(self.scale_im) 

132 elif ionic_model_name in ["TenTusscher2006_epi", "TTP"]: 

133 self.ionic_model = ionicmodels.TenTusscher2006_epi(self.scale_im) 

134 elif ionic_model_name in ["TTP_S", "TTP_SMOOTH"]: 

135 self.ionic_model = ionicmodels.TenTusscher2006_epi_smooth(self.scale_im) 

136 elif ionic_model_name in ["BiStable", "BS"]: 

137 self.ionic_model = ionicmodels.BiStable(self.scale_im) 

138 else: 

139 raise Exception("Unknown ionic model.") 

140 

141 self.size = self.ionic_model.size 

142 

143 def define_stimulus(self): 

144 

145 stim_dur = 2.0 

146 if "cuboid" in self.parabolic.domain_name: 

147 self.stim_protocol = [[0.0, stim_dur]] # list of stimuli times and stimuli durations 

148 self.stim_intensities = [50.0] # list of stimuli intensities 

149 self.stim_centers = [[0.0, 0.0, 0.0]] # list of stimuli centers 

150 r = 1.5 

151 self.stim_radii = [[r, r, r]] * len( 

152 self.stim_protocol 

153 ) # list of stimuli radii in the three directions (x,y,z) 

154 elif "cube" in self.parabolic.domain_name: 

155 self.stim_protocol = [[0.0, 2.0], [1000.0, 10.0]] 

156 self.stim_intensities = [50.0, 80.0] 

157 centers = [[0.0, 50.0, 50.0], [58.5, 0.0, 50.0]] 

158 self.stim_centers = [centers[i] for i in range(len(self.stim_protocol))] 

159 self.stim_radii = [[1.0, 50.0, 50.0], [1.5, 60.0, 50.0]] 

160 else: 

161 raise Exception("Unknown domain name.") 

162 

163 self.stim_protocol = np.array(self.stim_protocol) 

164 self.stim_protocol[:, 0] -= self.init_time # shift stimulus times by the initial time 

165 

166 # index of the last stimulus applied. The value -1 means no stimulus has been applied yet. 

167 self.last_stim_index = -1 

168 

169 def eval_f(self, u, t, fh=None): 

170 if fh is None: 

171 fh = self.dtype_f(init=self.init, val=0.0) 

172 

173 # eval ionic model rhs on u and put result in fh. All indices of the vector of vector fh must be computed (list(range(self.size)) 

174 self.eval_expr(self.ionic_model.f, u, fh, list(range(self.size)), False) 

175 # apply stimulus 

176 fh[0] += self.Istim(t) 

177 

178 # apply diffusion 

179 self.parabolic.add_disc_laplacian(u[0], fh[0]) 

180 

181 return fh 

182 

183 def Istim(self, t): 

184 tol = 1e-8 

185 for i, (stim_time, stim_dur) in enumerate(self.stim_protocol): 

186 # Look for which stimulus to apply at the current time t by checking the stimulus protocol: 

187 # Check if t is in the interval [stim_time, stim_time+stim_dur] with a tolerance tol 

188 # and apply the corresponding stimulus 

189 if (t + stim_dur * tol >= stim_time) and (t + stim_dur * tol < stim_time + stim_dur): 

190 # if the stimulus is not the same as the last one applied, update the last_stim_index and the space_stim vector 

191 if i != self.last_stim_index: 

192 self.last_stim_index = i 

193 # get the vector of zeros and ones defining the stimulus region 

194 self.space_stim = self.parabolic.stim_region(self.stim_centers[i], self.stim_radii[i]) 

195 # scale by the stimulus intensity and apply the change of units 

196 self.space_stim *= self.scale_im * self.stim_intensities[i] 

197 return self.space_stim 

198 

199 return self.parabolic.zero_stim_vec 

200 

201 def eval_expr(self, expr, u, fh, indeces, zero_untouched_indeces=True): 

202 # evaluate the expression expr on u and put the result in fh 

203 # Here expr is a wrapper on a C++ function that evaluates the rhs of the ionic model (or part of it) 

204 if expr is not None: 

205 expr(u, fh) 

206 

207 # indeces is a list of integers indicating which variables are modified by the expression expr. 

208 # This information is known a priori. Here we use it to zero the variables that are not modified by expr (if zero_untouched_indeces is True) 

209 if zero_untouched_indeces: 

210 non_indeces = [i for i in range(self.size) if i not in indeces] 

211 for i in non_indeces: 

212 fh[i][:] = 0.0 

213 

214 

215class MultiscaleMonodomainODE(MonodomainODE): 

216 """ 

217 The multiscale version of the MonodomainODE problem. This class is used to solve the monodomain equation with a multirate solver. 

218 The main difference with respect to the MonodomainODE class is that the right-hand side of the ODE system is split into three parts: 

219 - impl: The discrete Laplacian. This is a stiff term threated implicitly by time integrators. 

220 - expl: The non stiff term of the ionic models, threated explicitly by time integrators. 

221 - exp: The very stiff but diagonal terms of the ionic models, threated exponentially by time integrators. 

222 """ 

223 

224 dtype_f = imexexp_mesh 

225 

226 def __init__(self, **problem_params): 

227 super(MultiscaleMonodomainODE, self).__init__(**problem_params) 

228 

229 self.define_splittings() 

230 

231 self.constant_lambda_and_phi = False 

232 

233 def define_splittings(self): 

234 """ 

235 This function defines the splittings used in the problem. 

236 The im_* variables are meant for internal use, the rhs_* for external use (i.e. in the sweeper). 

237 The *_args and *_indeces are list of integers. 

238 The *_args are list of variables that are needed to evaluate a function plus the variables that are modified by the function. 

239 The *_indeces are the list of variables that are modified by the function (subset of args). 

240 Example: for f(x_0,x_1,x_2,x_3,x_4)=f(x_0,x_2,x_4)=(y_0,y_1,0,0,y_4) we have 

241 f_args=[0,1,2,4]=([0,2,4] union [0,1,4]) since f needs x_0,x_2,x_4 and y_0,y_1,y_4 are effective outputs of the function (others are zero). 

242 f_indeces=[0,1,4] since only y_0,y_1,y_4 are outputs of the function, y_2,y_3 are zero 

243 

244 The ionic model has many variables (say M) and each variable has the same number of dofs as the mesh (say N). 

245 Therefore the problem has size N*M and quickly becomes very large. Thanks to args and indeces we can: 

246 - avoid to copy the whole vector M*N of variables when we only need a subset, for instance 2*N 

247 - avoid unnecessary operations on the whole vector, for instance update only the variables that are effective outputs of a function (indeces), 

248 and so on. 

249 

250 Yeah, it's a bit a mess, but helpful. 

251 """ 

252 # define nonstiff term (explicit part) 

253 # the wrapper to c++ expression that evaluates the nonstiff part of the ionic model 

254 self.im_f_nonstiff = self.ionic_model.f_expl 

255 # the args of f_expl 

256 self.im_nonstiff_args = self.ionic_model.f_expl_args 

257 # the indeces of f_expl 

258 self.im_nonstiff_indeces = self.ionic_model.f_expl_indeces 

259 

260 # define stiff term (implicit part) 

261 self.im_f_stiff = None # no stiff part coming from ionic model to be threated implicitly. Indeed, all the stiff terms are diagonal and are threated exponentially. 

262 self.im_stiff_args = [] 

263 self.im_stiff_indeces = [] 

264 

265 # define exp term (eponential part) 

266 # the exponential term is defined by f_exp(u)= lmbda(u)*(u-yinf(u)), hence we only need to define lmbda and yinf 

267 # the wrapper to c++ expression that evaluates lmbda(u) 

268 self.im_lmbda_exp = self.ionic_model.lmbda_exp 

269 # the wrapper to c++ expression that evaluates lmbda(u) and yinf(u) 

270 self.im_lmbda_yinf_exp = self.ionic_model.lmbda_yinf_exp 

271 # the args of lmbda and yinf (they are the same) 

272 self.im_exp_args = self.ionic_model.f_exp_args 

273 # the indeces of lmbda and yinf 

274 self.im_exp_indeces = self.ionic_model.f_exp_indeces 

275 

276 # the spectral radius of the jacobian of non stiff term. We use a bound 

277 self.rho_nonstiff_cte = self.ionic_model.rho_f_expl() 

278 

279 self.rhs_stiff_args = self.im_stiff_args 

280 self.rhs_stiff_indeces = self.im_stiff_indeces 

281 # Add the potential V index 0 to the rhs_stiff_args and rhs_stiff_indeces. 

282 # Indeed V is used to compute the Laplacian and is affected by the Laplacian, which is the implicit part of the problem. 

283 if 0 not in self.rhs_stiff_args: 

284 self.rhs_stiff_args = [0] + self.rhs_stiff_args 

285 if 0 not in self.rhs_stiff_indeces: 

286 self.rhs_stiff_indeces = [0] + self.rhs_stiff_indeces 

287 

288 self.rhs_nonstiff_args = self.im_nonstiff_args 

289 self.rhs_nonstiff_indeces = self.im_nonstiff_indeces 

290 # Add the potential V index 0 to the rhs_nonstiff_indeces. Indeed V is affected by the stimulus, which is a non stiff term. 

291 if 0 not in self.rhs_nonstiff_indeces: 

292 self.rhs_nonstiff_indeces = [0] + self.rhs_nonstiff_indeces 

293 

294 self.im_non_exp_indeces = [i for i in range(self.size) if i not in self.im_exp_indeces] 

295 

296 self.rhs_exp_args = self.im_exp_args 

297 self.rhs_exp_indeces = self.im_exp_indeces 

298 

299 self.rhs_non_exp_indeces = self.im_non_exp_indeces 

300 

301 # a vector of ones, useful 

302 self.one = self.dtype_u(init=self.init, val=1.0) 

303 

304 # some space to store lmbda and yinf 

305 self.lmbda = self.dtype_u(init=self.init, val=0.0) 

306 self.yinf = self.dtype_u(init=self.init, val=0.0) 

307 

308 def solve_system(self, rhs, factor, u0, t, u_sol=None): 

309 """ 

310 Solve the system u_sol[0] = (M-factor*A)^{-1} * M * rhs[0] 

311 and sets u_sol[i] = rhs[i] for i>0 (as if A=0 for i>0) 

312 

313 Arguments: 

314 rhs (dtype_u): right-hand side 

315 factor (float): factor multiplying the Laplacian 

316 u0 (dtype_u): initial guess 

317 t (float): current time 

318 u_sol (dtype_u, optional): some space to store the solution. If None, a new space is allocated. Can be the same as rhs. 

319 """ 

320 if u_sol is None: 

321 u_sol = self.dtype_u(init=self.init, val=0.0) 

322 

323 self.parabolic.solve_system(rhs[0], factor, u0[0], t, u_sol[0]) 

324 

325 if rhs is not u_sol: 

326 for i in range(1, self.size): 

327 u_sol[i][:] = rhs[i][:] 

328 

329 return u_sol 

330 

331 def eval_f(self, u, t, eval_impl=True, eval_expl=True, eval_exp=True, fh=None, zero_untouched_indeces=True): 

332 """ 

333 Evaluates the right-hand side terms. 

334 

335 Arguments: 

336 u (dtype_u): the current solution 

337 t (float): the current time 

338 eval_impl (bool, optional): if True, evaluates the implicit part of the right-hand side. Default is True. 

339 eval_expl (bool, optional): if True, evaluates the explicit part of the right-hand side. Default is True. 

340 eval_exp (bool, optional): if True, evaluates the exponential part of the right-hand side. Default is True. 

341 fh (dtype_f, optional): space to store the right-hand side. If None, a new space is allocated. Default is None. 

342 zero_untouched_indeces (bool, optional): if True, the variables that are not modified by the right-hand side are zeroed. Default is True. 

343 """ 

344 

345 if fh is None: 

346 fh = self.dtype_f(init=self.init, val=0.0) 

347 

348 if eval_expl: 

349 fh.expl = self.eval_f_nonstiff(u, t, fh.expl, zero_untouched_indeces) 

350 

351 if eval_impl: 

352 fh.impl = self.eval_f_stiff(u, t, fh.impl, zero_untouched_indeces) 

353 

354 if eval_exp: 

355 fh.exp = self.eval_f_exp(u, t, fh.exp, zero_untouched_indeces) 

356 

357 return fh 

358 

359 def eval_f_nonstiff(self, u, t, fh_nonstiff, zero_untouched_indeces=True): 

360 # eval ionic model nonstiff terms 

361 self.eval_expr(self.im_f_nonstiff, u, fh_nonstiff, self.im_nonstiff_indeces, zero_untouched_indeces) 

362 

363 if not zero_untouched_indeces and 0 not in self.im_nonstiff_indeces: 

364 fh_nonstiff[0][:] = 0.0 

365 

366 # apply stimulus 

367 fh_nonstiff[0] += self.Istim(t) 

368 

369 return fh_nonstiff 

370 

371 def eval_f_stiff(self, u, t, fh_stiff, zero_untouched_indeces=True): 

372 # eval ionic model stiff terms 

373 self.eval_expr(self.im_f_stiff, u, fh_stiff, self.im_stiff_indeces, zero_untouched_indeces) 

374 

375 if not zero_untouched_indeces and 0 not in self.im_stiff_indeces: 

376 fh_stiff[0][:] = 0.0 

377 

378 # apply diffusion 

379 self.parabolic.add_disc_laplacian(u[0], fh_stiff[0]) 

380 

381 return fh_stiff 

382 

383 def eval_f_exp(self, u, t, fh_exp, zero_untouched_indeces=True): 

384 # eval ionic model exp terms f_exp(u)= lmbda(u)*(u-yinf(u) 

385 self.eval_lmbda_yinf_exp(u, self.lmbda, self.yinf) 

386 for i in self.im_exp_indeces: 

387 fh_exp[i][:] = self.lmbda[i] * (u[i] - self.yinf[i]) 

388 

389 if zero_untouched_indeces: 

390 fh_exp[self.im_non_exp_indeces] = 0.0 

391 

392 return fh_exp 

393 

394 def lmbda_eval(self, u, t, lmbda=None): 

395 if lmbda is None: 

396 lmbda = self.dtype_u(init=self.init, val=0.0) 

397 

398 self.eval_lmbda_exp(u, lmbda) 

399 

400 lmbda[self.im_non_exp_indeces] = 0.0 

401 

402 return lmbda 

403 

404 def eval_lmbda_yinf_exp(self, u, lmbda, yinf): 

405 self.im_lmbda_yinf_exp(u, lmbda, yinf) 

406 

407 def eval_lmbda_exp(self, u, lmbda): 

408 self.im_lmbda_exp(u, lmbda)