Coverage for pySDC/implementations/sweeper_classes/Runge_Kutta_Nystrom.py: 96%

98 statements  

« prev     ^ index     » next       coverage.py v7.10.6, created at 2025-09-04 15:08 +0000

1import numpy as np 

2import logging 

3 

4from pySDC.core.sweeper import Sweeper, _Pars 

5from pySDC.core.errors import ParameterError 

6from pySDC.implementations.datatype_classes.particles import particles, fields, acceleration 

7from pySDC.implementations.sweeper_classes.Runge_Kutta import RungeKutta 

8 

9 

10class ButcherTableauNoCollUpdate(object): 

11 """Version of Butcher Tableau that does not need a collocation update because the weights are put in the last line of Q""" 

12 

13 def __init__(self, weights, nodes, matrix): 

14 """ 

15 Initialization routine to get a quadrature matrix out of a Butcher tableau 

16 

17 Args: 

18 weights (numpy.ndarray): Butcher tableau weights 

19 nodes (numpy.ndarray): Butcher tableau nodes 

20 matrix (numpy.ndarray): Butcher tableau entries 

21 """ 

22 # check if the arguments have the correct form 

23 if type(matrix) != np.ndarray: 

24 raise ParameterError('Runge-Kutta matrix needs to be supplied as a numpy array!') 

25 elif len(np.unique(matrix.shape)) != 1 or len(matrix.shape) != 2: 

26 raise ParameterError('Runge-Kutta matrix needs to be a square 2D numpy array!') 

27 

28 if type(weights) != np.ndarray: 

29 raise ParameterError('Weights need to be supplied as a numpy array!') 

30 elif len(weights.shape) != 1: 

31 raise ParameterError(f'Incompatible dimension of weights! Need 1, got {len(weights.shape)}') 

32 elif len(weights) != matrix.shape[0]: 

33 raise ParameterError(f'Incompatible number of weights! Need {matrix.shape[0]}, got {len(weights)}') 

34 

35 if type(nodes) != np.ndarray: 

36 raise ParameterError('Nodes need to be supplied as a numpy array!') 

37 elif len(nodes.shape) != 1: 

38 raise ParameterError(f'Incompatible dimension of nodes! Need 1, got {len(nodes.shape)}') 

39 elif len(nodes) != matrix.shape[0]: 

40 raise ParameterError(f'Incompatible number of nodes! Need {matrix.shape[0]}, got {len(nodes)}') 

41 

42 self.globally_stiffly_accurate = np.allclose(matrix[-1], weights) 

43 

44 self.tleft = 0.0 

45 self.tright = 1.0 

46 self.num_solution_stages = 0 if self.globally_stiffly_accurate else 1 

47 self.num_nodes = matrix.shape[0] + self.num_solution_stages 

48 self.weights = weights 

49 

50 if self.globally_stiffly_accurate: 

51 # For globally stiffly accurate methods, the last row of the Butcher tableau is the same as the weights. 

52 self.nodes = np.append([0], nodes) 

53 self.Qmat = np.zeros([self.num_nodes + 1, self.num_nodes + 1]) 

54 self.Qmat[1:, 1:] = matrix 

55 else: 

56 self.nodes = np.append(np.append([0], nodes), [1]) 

57 self.Qmat = np.zeros([self.num_nodes + 1, self.num_nodes + 1]) 

58 self.Qmat[1:-1, 1:-1] = matrix 

59 self.Qmat[-1, 1:-1] = weights # this is for computing the solution to the step from the previous stages 

60 

61 self.left_is_node = True 

62 self.right_is_node = self.nodes[-1] == self.tright 

63 

64 # compute distances between the nodes 

65 if self.num_nodes > 1: 

66 self.delta_m = self.nodes[1:] - self.nodes[:-1] 

67 else: 

68 self.delta_m = np.zeros(1) 

69 self.delta_m[0] = self.nodes[0] - self.tleft 

70 

71 # check if the RK scheme is implicit 

72 self.implicit = any(matrix[i, i] != 0 for i in range(self.num_nodes - self.num_solution_stages)) 

73 

74 

75class RungeKuttaNystrom(RungeKutta): 

76 """ 

77 Runge-Kutta scheme that fits the interface of a sweeper. 

78 Actually, the sweeper idea fits the Runge-Kutta idea when using only lower triangular rules, where solutions 

79 at the nodes are successively computed from earlier nodes. However, we only perform a single iteration of this. 

80 

81 We have two choices to realise a Runge-Kutta sweeper: We can choose Q = Q_Delta = <Butcher tableau>, but in this 

82 implementation, that would lead to a lot of wasted FLOPS from integrating with Q and then with Q_Delta and 

83 subtracting the two. For that reason, we built this new sweeper, which does not have a preconditioner. 

84 

85 This class only supports lower triangular Butcher tableaux such that the system can be solved with forward 

86 substitution. In this way, we don't get the maximum order that we could for the number of stages, but computing the 

87 stages is much cheaper. In particular, if the Butcher tableaux is strictly lower triangular, we get an explicit 

88 method, which does not require us to solve a system of equations to compute the stages. 

89 

90 Please be aware that all fundamental parameters of the Sweeper are ignored. These include 

91 

92 - num_nodes 

93 - collocation_class 

94 - initial_guess 

95 - QI 

96 

97 All of these variables are either determined by the RK rule, or are not part of an RK scheme. 

98 

99 Attribues: 

100 butcher_tableau (ButcherTableauNoCollUpdate): Butcher tableau for the Runge-Kutta scheme that you want 

101 """ 

102 

103 ButcherTableauClass = ButcherTableauNoCollUpdate 

104 weights_bar = None 

105 matrix_bar = None 

106 

107 def __init__(self, params, level): 

108 """ 

109 Initialization routine for the custom sweeper 

110 

111 Args: 

112 params: parameters for the sweeper 

113 level (pySDC.Level.level): the level that uses this sweeper 

114 """ 

115 super().__init__(params, level) 

116 self.coll_bar = self.get_Butcher_tableau_bar() 

117 self.Qx = self.coll_bar.Qmat 

118 

119 @classmethod 

120 def get_Butcher_tableau_bar(cls): 

121 return cls.ButcherTableauClass(cls.weights_bar, cls.nodes, cls.matrix_bar) 

122 

123 def get_full_f(self, f): 

124 """ 

125 Test the right hand side function is the correct type 

126 

127 Args: 

128 f (dtype_f): Right hand side at a single node 

129 

130 Returns: 

131 mesh: Full right hand side as a mesh 

132 """ 

133 

134 if type(f) in [particles, fields, acceleration]: 

135 return f 

136 else: 

137 raise NotImplementedError(f'Type \"{type(f)}\" not implemented') 

138 

139 def update_nodes(self): 

140 """ 

141 Update the u- and f-values at the collocation nodes 

142 

143 Returns: 

144 None 

145 """ 

146 

147 # get current level and problem description 

148 L = self.level 

149 P = L.prob 

150 

151 # only if the level has been touched before 

152 assert L.status.unlocked 

153 assert L.status.sweep <= 1, "RK schemes are direct solvers. Please perform only 1 iteration!" 

154 

155 # get number of collocation nodes for easier access 

156 M = self.coll.num_nodes 

157 

158 for m in range(0, M): 

159 # build rhs, consisting of the known values from above and new values from previous nodes (at k+1) 

160 rhs = P.dtype_u(L.u[0]) 

161 rhs.pos += L.dt * self.coll.nodes[m + 1] * L.u[0].vel 

162 

163 for j in range(1, m + 1): 

164 # build RHS from f-terms (containing the E field) and the B field 

165 

166 f = P.build_f(L.f[j], L.u[j], L.time + L.dt * self.coll.nodes[j]) 

167 rhs.pos += L.dt**2 * self.Qx[m + 1, j] * self.get_full_f(f) 

168 """ 

169 

170 Implicit part only works for Velocity-Verlet scheme 

171 Boris solver for the implicit part 

172 

173 """ 

174 

175 if self.coll.implicit: 

176 ck = rhs.vel * 0.0 

177 L.f[3] = P.eval_f(rhs, L.time + L.dt) 

178 rhs.vel = P.boris_solver(ck, L.dt, L.f[0], L.f[3], L.u[0]) 

179 

180 else: 

181 rhs.vel += L.dt * self.QI[m + 1, j] * self.get_full_f(f) 

182 

183 # implicit solve with prefactor stemming from the diagonal of Qd 

184 L.u[m + 1] = rhs 

185 # update function values 

186 if self.coll.implicit: 

187 # That is why it only works for the Velocity-Verlet scheme 

188 L.f[0] = P.eval_f(L.u[0], L.time) 

189 L.f[m + 1] = P.dtype_f(L.f[0]) 

190 else: 

191 if m != self.coll.num_nodes - 1: 

192 L.f[m + 1] = P.eval_f(L.u[m + 1], L.time + L.dt * self.coll.nodes[m]) 

193 

194 # indicate presence of new values at this level 

195 

196 L.status.updated = True 

197 

198 return None 

199 

200 def compute_end_point(self): 

201 """ 

202 In this Runge-Kutta implementation, the solution to the step is always stored in the last node 

203 """ 

204 self.level.uend = self.level.u[-1] 

205 

206 

207class RKN(RungeKuttaNystrom): 

208 """ 

209 Runge-Kutta-Nystrom method 

210 https://link.springer.com/book/10.1007/978-3-540-78862-1 

211 page: 284 

212 Chapter: II.14 Numerical methods for Second order differential equations 

213 """ 

214 

215 nodes = np.array([0.0, 0.5, 0.5, 1]) 

216 weights = np.array([1.0, 2.0, 2.0, 1.0]) / 6.0 

217 matrix = np.zeros([4, 4]) 

218 matrix[1, 0] = 0.5 

219 matrix[2, 1] = 0.5 

220 matrix[3, 2] = 1.0 

221 

222 weights_bar = np.array([1.0, 1.0, 1.0, 0]) / 6.0 

223 matrix_bar = np.zeros([4, 4]) 

224 matrix_bar[1, 0] = 1 / 8 

225 matrix_bar[2, 0] = 1 / 8 

226 matrix_bar[3, 2] = 1 / 2 

227 

228 

229class Velocity_Verlet(RungeKuttaNystrom): 

230 """ 

231 Velocity-Verlet scheme 

232 https://de.wikipedia.org/wiki/Verlet-Algorithmus 

233 """ 

234 

235 nodes = np.array([1.0, 1.0]) 

236 weights = np.array([1 / 2, 0]) 

237 matrix = np.zeros([2, 2]) 

238 matrix[1, 1] = 1 

239 weights_bar = np.array([1 / 2, 0]) 

240 matrix_bar = np.zeros([2, 2])