Coverage for pySDC/tutorial/step_5/C_advection_and_PFASST.py: 100%
81 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
1from pathlib import Path
2import numpy as np
4from pySDC.helpers.stats_helper import get_sorted
6from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI
7from pySDC.implementations.problem_classes.AdvectionEquation_ND_FD import advectionNd
8from pySDC.implementations.sweeper_classes.generic_implicit import generic_implicit
9from pySDC.implementations.transfer_classes.TransferMesh import mesh_to_mesh
12def main():
13 """
14 A simple test program to run PFASST for the advection equation in multiple ways...
15 """
17 # initialize level parameters
18 level_params = dict()
19 level_params['restol'] = 1e-09
20 level_params['dt'] = 0.0625
22 # initialize sweeper parameters
23 sweeper_params = dict()
24 sweeper_params['quad_type'] = 'RADAU-RIGHT'
25 sweeper_params['num_nodes'] = [3]
27 # initialize problem parameters
28 problem_params = dict()
29 problem_params['c'] = 1 # advection coefficient
30 problem_params['freq'] = 4 # frequency for the test value
31 problem_params['nvars'] = [128, 64] # number of degrees of freedom for each level
32 problem_params['order'] = 4
33 problem_params['bc'] = 'periodic'
34 problem_params['stencil_type'] = 'center'
36 # initialize step parameters
37 step_params = dict()
38 step_params['maxiter'] = 50
40 # initialize space transfer parameters
41 space_transfer_params = dict()
42 space_transfer_params['rorder'] = 2
43 space_transfer_params['iorder'] = 6
44 space_transfer_params['periodic'] = True
46 # initialize controller parameters
47 controller_params = dict()
48 controller_params['logger_level'] = 30
49 controller_params['predict_type'] = 'pfasst_burnin'
51 # fill description dictionary for easy step instantiation
52 description = dict()
53 description['problem_class'] = advectionNd # pass problem class
54 description['problem_params'] = problem_params # pass problem parameters
55 description['sweeper_class'] = generic_implicit # pass sweeper (see part B)
56 description['level_params'] = level_params # pass level parameters
57 description['step_params'] = step_params # pass step parameters
58 description['space_transfer_class'] = mesh_to_mesh # pass spatial transfer class
59 description['space_transfer_params'] = space_transfer_params # pass parameters for spatial transfer
61 # set time parameters
62 t0 = 0.0
63 Tend = 1.0
65 # set up list of parallel time-steps to run PFASST with
66 nsteps = int(Tend / level_params['dt'])
67 num_proc_list = [2**i for i in range(int(np.log2(nsteps) + 1))]
69 # set up list of types of implicit SDC sweepers: LU and implicit Euler here
70 QI_list = ['LU', 'IE']
71 niters_min_all = {}
72 niters_max_all = {}
74 Path("data").mkdir(parents=True, exist_ok=True)
75 f = open('data/step_5_C_out.txt', 'w')
76 # loop over different types of implicit sweeper types
77 for QI in QI_list:
78 # define and set preconditioner for the implicit sweeper
79 sweeper_params['QI'] = QI
80 description['sweeper_params'] = sweeper_params # pass sweeper parameters
82 # init min/max iteration counts
83 niters_min_all[QI] = 99
84 niters_max_all[QI] = 0
86 # loop over different number of processes
87 for num_proc in num_proc_list:
88 out = 'Working with QI = %s on %2i processes...' % (QI, num_proc)
89 f.write(out + '\n')
90 print(out)
91 # instantiate controller
92 controller = controller_nonMPI(
93 num_procs=num_proc, controller_params=controller_params, description=description
94 )
96 # get initial values on finest level
97 P = controller.MS[0].levels[0].prob
98 uinit = P.u_exact(t0)
100 # call main function to get things done...
101 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend)
103 # compute exact solution and compare
104 uex = P.u_exact(Tend)
105 err = abs(uex - uend)
107 # filter statistics by type (number of iterations)
108 iter_counts = get_sorted(stats, type='niter', sortby='time')
110 # compute and print statistics
111 niters = np.array([item[1] for item in iter_counts])
112 niters_min_all[QI] = min(np.mean(niters), niters_min_all[QI])
113 niters_max_all[QI] = max(np.mean(niters), niters_max_all[QI])
114 out = ' Mean number of iterations: %4.2f' % np.mean(niters)
115 f.write(out + '\n')
116 print(out)
117 out = ' Range of values for number of iterations: %2i ' % np.ptp(niters)
118 f.write(out + '\n')
119 print(out)
120 out = ' Position of max/min number of iterations: %2i -- %2i' % (
121 int(np.argmax(niters)),
122 int(np.argmin(niters)),
123 )
124 f.write(out + '\n')
125 print(out)
126 out = ' Std and var for number of iterations: %4.2f -- %4.2f' % (
127 float(np.std(niters)),
128 float(np.var(niters)),
129 )
130 f.write(out + '\n')
131 f.write(out + '\n')
132 print(out)
134 f.write('\n')
135 print()
137 assert err < 5.1365e-04, "ERROR: error is too high, got %s" % err
139 out = 'Mean number of iterations went up from %4.2f to %4.2f for QI = %s!' % (
140 niters_min_all[QI],
141 niters_max_all[QI],
142 QI,
143 )
144 f.write(out + '\n')
145 print(out)
147 f.write('\n\n')
148 print()
149 print()
151 f.close()
154if __name__ == "__main__":
155 main()