Coverage for pySDC/implementations/problem_classes/generic_MPIFFT_Laplacian.py: 99%

86 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-20 17:10 +0000

1import numpy as np 

2from mpi4py import MPI 

3from mpi4py_fft import PFFT 

4 

5from pySDC.core.errors import ProblemError 

6from pySDC.core.problem import Problem, WorkCounter 

7from pySDC.implementations.datatype_classes.mesh import mesh, imex_mesh 

8 

9from mpi4py_fft import newDistArray 

10 

11 

12class IMEX_Laplacian_MPIFFT(Problem): 

13 r""" 

14 Generic base class for IMEX problems using a spectral method to solve the Laplacian implicitly and a possible rest 

15 explicitly. The FFTs are done with``mpi4py-fft`` [1]_. 

16 

17 Parameters 

18 ---------- 

19 nvars : tuple, optional 

20 Spatial resolution 

21 spectral : bool, optional 

22 If True, the solution is computed in spectral space. 

23 L : float, optional 

24 Denotes the period of the function to be approximated for the Fourier transform. 

25 alpha : float, optional 

26 Multiplicative factor before the Laplacian 

27 comm : MPI.COMM_World 

28 Communicator for parallelisation. 

29 

30 Attributes 

31 ---------- 

32 fft : PFFT 

33 Object for parallel FFT transforms. 

34 X : mesh-grid 

35 Grid coordinates in real space. 

36 K2 : matrix 

37 Laplace operator in spectral space. 

38 

39 References 

40 ---------- 

41 .. [1] Lisandro Dalcin, Mikael Mortensen, David E. Keyes. Fast parallel multidimensional FFT using advanced MPI. 

42 Journal of Parallel and Distributed Computing (2019). 

43 """ 

44 

45 dtype_u = mesh 

46 dtype_f = imex_mesh 

47 

48 xp = np 

49 fft_backend = 'fftw' 

50 fft_comm_backend = 'MPI' 

51 

52 @classmethod 

53 def setup_GPU(cls): 

54 """switch to GPU modules""" 

55 import cupy as cp 

56 from pySDC.implementations.datatype_classes.cupy_mesh import cupy_mesh, imex_cupy_mesh 

57 

58 cls.xp = cp 

59 

60 cls.dtype_u = cupy_mesh 

61 cls.dtype_f = imex_cupy_mesh 

62 

63 cls.fft_backend = 'cupy' 

64 cls.fft_comm_backend = 'NCCL' 

65 

66 def __init__( 

67 self, nvars=None, spectral=False, L=2 * np.pi, alpha=1.0, comm=MPI.COMM_WORLD, dtype='d', useGPU=False, x0=0.0 

68 ): 

69 """Initialization routine""" 

70 

71 if useGPU: 

72 self.setup_GPU() 

73 

74 if nvars is None: 

75 nvars = (128, 128) 

76 

77 if not (isinstance(nvars, tuple) and len(nvars) > 1): 

78 raise ProblemError('Need at least two dimensions for distributed FFTs') 

79 

80 # Creating FFT structure 

81 self.ndim = len(nvars) 

82 axes = tuple(range(self.ndim)) 

83 self.fft = PFFT( 

84 comm, 

85 list(nvars), 

86 axes=axes, 

87 dtype=dtype, 

88 collapse=True, 

89 backend=self.fft_backend, 

90 comm_backend=self.fft_comm_backend, 

91 ) 

92 

93 # get test data to figure out type and dimensions 

94 tmp_u = newDistArray(self.fft, spectral) 

95 

96 L = np.array([L] * self.ndim, dtype=float) 

97 

98 # invoke super init, passing the communicator and the local dimensions as init 

99 super().__init__(init=(tmp_u.shape, comm, tmp_u.dtype)) 

100 self._makeAttributeAndRegister( 

101 'nvars', 'spectral', 'L', 'alpha', 'comm', 'x0', localVars=locals(), readOnly=True 

102 ) 

103 

104 # get local mesh 

105 X = list(self.xp.ogrid[self.fft.local_slice(False)]) 

106 N = self.fft.global_shape() 

107 for i in range(len(N)): 

108 X[i] = x0 + (X[i] * L[i] / N[i]) 

109 self.X = [self.xp.broadcast_to(x, self.fft.shape(False)) for x in X] 

110 

111 # get local wavenumbers and Laplace operator 

112 s = self.fft.local_slice() 

113 N = self.fft.global_shape() 

114 k = [self.xp.fft.fftfreq(n, 1.0 / n).astype(int) for n in N] 

115 K = [ki[si] for ki, si in zip(k, s)] 

116 Ks = list(self.xp.meshgrid(*K, indexing='ij', sparse=True)) 

117 Lp = 2 * np.pi / self.L 

118 for i in range(self.ndim): 

119 Ks[i] = (Ks[i] * Lp[i]).astype(float) 

120 K = [self.xp.broadcast_to(k, self.fft.shape(True)) for k in Ks] 

121 K = self.xp.array(K).astype(float) 

122 self.K2 = self.xp.sum(K * K, 0, dtype=float) # Laplacian in spectral space 

123 

124 # Need this for diagnostics 

125 self.dx = self.L[0] / nvars[0] 

126 self.dy = self.L[1] / nvars[1] 

127 

128 # work counters 

129 self.work_counters['rhs'] = WorkCounter() 

130 

131 def eval_f(self, u, t): 

132 """ 

133 Routine to evaluate the right-hand side of the problem. 

134 

135 Parameters 

136 ---------- 

137 u : dtype_u 

138 Current values of the numerical solution. 

139 t : float 

140 Current time at which the numerical solution is computed. 

141 

142 Returns 

143 ------- 

144 f : dtype_f 

145 The right-hand side of the problem. 

146 """ 

147 

148 f = self.dtype_f(self.init) 

149 

150 f.impl[:] = self._eval_Laplacian(u, f.impl) 

151 

152 if self.spectral: 

153 tmp = self.fft.backward(u) 

154 tmp[:] = self._eval_explicit_part(tmp, t, tmp) 

155 f.expl[:] = self.fft.forward(tmp) 

156 

157 else: 

158 f.expl[:] = self._eval_explicit_part(u, t, f.expl) 

159 

160 self.work_counters['rhs']() 

161 return f 

162 

163 def _eval_Laplacian(self, u, f_impl, alpha=None): 

164 alpha = alpha if alpha else self.alpha 

165 if self.spectral: 

166 f_impl[:] = -alpha * self.K2 * u 

167 else: 

168 u_hat = self.fft.forward(u) 

169 lap_u_hat = -alpha * self.K2 * u_hat 

170 f_impl[:] = self.fft.backward(lap_u_hat, f_impl) 

171 return f_impl 

172 

173 def _eval_explicit_part(self, u, t, f_expl): 

174 return f_expl 

175 

176 def solve_system(self, rhs, factor, u0, t): 

177 """ 

178 Simple FFT solver for the diffusion part. 

179 

180 Parameters 

181 ---------- 

182 rhs : dtype_f 

183 Right-hand side for the linear system. 

184 factor : float 

185 Abbrev. for the node-to-node stepsize (or any other factor required). 

186 u0 : dtype_u 

187 Initial guess for the iterative solver (not used here so far). 

188 t : float 

189 Current time (e.g. for time-dependent BCs). 

190 

191 Returns 

192 ------- 

193 me : dtype_u 

194 The solution as mesh. 

195 """ 

196 me = self.dtype_u(self.init) 

197 me[:] = self._invert_Laplacian(me, factor, rhs) 

198 

199 return me 

200 

201 def _invert_Laplacian(self, me, factor, rhs, alpha=None): 

202 alpha = alpha if alpha else self.alpha 

203 if self.spectral: 

204 me[:] = rhs / (1.0 + factor * alpha * self.K2) 

205 

206 else: 

207 rhs_hat = self.fft.forward(rhs) 

208 rhs_hat /= 1.0 + factor * alpha * self.K2 

209 me[:] = self.fft.backward(rhs_hat) 

210 return me