Coverage for pySDC/implementations/problem_classes/Piline.py: 100%
44 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import numpy as np
2from scipy.integrate import solve_ivp
4from pySDC.core.problem import Problem
5from pySDC.implementations.datatype_classes.mesh import mesh, imex_mesh
8# noinspection PyUnusedLocal
9class piline(Problem):
10 r"""
11 Example implementing the model of the piline. It serves as a transmission line in an energy grid. The problem of simulating the
12 piline consists of three ordinary differential equations (ODEs) with nonhomogeneous part:
14 .. math::
15 \frac{d v_{C_1} (t)}{dt} = -\frac{1}{R_s C_1}v_{C_1} (t) - \frac{1}{C_1} i_{L_\pi} (t) + \frac{V_s}{R_s C_1},
17 .. math::
18 \frac{d v_{C_2} (t)}{dt} = -\frac{1}{R_\ell C_2}v_{C_2} (t) + \frac{1}{C_2} i_{L_\pi} (t),
20 .. math::
21 \frac{d i_{L_\pi} (t)}{dt} = \frac{1}{L_\pi} v_{C_1} (t) - \frac{1}{L_\pi} v_{C_2} (t) - \frac{R_\pi}{L_\pi} i_{L_\pi} (t),
23 which can be expressed as a nonhomogeneous linear system of ODEs
25 .. math::
26 \frac{d u(t)}{dt} = A u(t) + f(t)
28 using an initial condition.
30 Parameters
31 ----------
32 Vs : float, optional
33 Voltage at the voltage source :math:`V_s`.
34 Rs : float, optional
35 Resistance of the resistor :math:`R_s` at the voltage source.
36 C1 : float, optional
37 Capacitance of the capacitor :math:`C_1`.
38 Rpi : float, optional
39 Resistance of the resistor :math:`R_\pi`.
40 Lpi : float, optional
41 Inductance of the inductor :math:`L_\pi`.
42 C2 : float, optional
43 Capacitance of the capacitor :math:`C_2`.
44 Rl : float, optional
45 Resistance of the resistive load :math:`R_\ell`.
47 Attributes:
48 A : np.2darray
49 Coefficient matrix of the linear ODE system.
50 """
52 dtype_u = mesh
53 dtype_f = imex_mesh
55 def __init__(self, Vs=100.0, Rs=1.0, C1=1.0, Rpi=0.2, Lpi=1.0, C2=1.0, Rl=5.0):
56 """Initialization routine"""
58 nvars = 3
59 # invoke super init, passing number of dofs
60 super().__init__(init=(nvars, None, np.dtype('float64')))
61 self._makeAttributeAndRegister(
62 'nvars', 'Vs', 'Rs', 'C1', 'Rpi', 'Lpi', 'C2', 'Rl', localVars=locals(), readOnly=True
63 )
65 # compute dx and get discretization matrix A
66 self.A = np.zeros((3, 3))
67 self.A[0, 0] = -1 / (self.Rs * self.C1)
68 self.A[0, 2] = -1 / self.C1
69 self.A[1, 1] = -1 / (self.Rl * self.C2)
70 self.A[1, 2] = 1 / self.C2
71 self.A[2, 0] = 1 / self.Lpi
72 self.A[2, 1] = -1 / self.Lpi
73 self.A[2, 2] = -self.Rpi / self.Lpi
75 def eval_f(self, u, t):
76 """
77 Routine to evaluate the right-hand side of the problem.
79 Parameters
80 ----------
81 u : dtype_u
82 Current values of the numerical solution.
83 t : float
84 Current time of the numerical solution is computed.
86 Returns
87 -------
88 f : dtype_f
89 The right-hand side of the problem.
90 """
92 f = self.dtype_f(self.init, val=0.0)
93 f.impl[:] = self.A.dot(u)
94 f.expl[0] = self.Vs / (self.Rs * self.C1)
95 return f
97 def solve_system(self, rhs, factor, u0, t):
98 r"""
99 Simple linear solver for :math:`(I-factor\cdot A)\vec{u}=\vec{rhs}`.
101 Parameters
102 ----------
103 rhs : dtype_f
104 Right-hand side for the linear system.
105 factor : float
106 Abbrev. for the local stepsize (or any other factor required).
107 u0 : dtype_u
108 Initial guess for the iterative solver.
109 t : float
110 Current time (e.g. for time-dependent BCs).
112 Returns
113 -------
114 me : dtype_u
115 The solution as mesh.
116 """
118 me = self.dtype_u(self.init)
119 me[:] = np.linalg.solve(np.eye(self.nvars) - factor * self.A, rhs)
120 return me
122 def u_exact(self, t, u_init=None, t_init=None):
123 r"""
124 Routine to approximate the exact solution at time :math:`t` by ``SciPy`` as a reference.
126 Parameters
127 ----------
128 t : float
129 Time of the exact solution.
130 u_init : pySDC.problem.Piline.dtype_u
131 Initial conditions for getting the exact solution.
132 t_init : float
133 The starting time.
135 Returns
136 -------
137 me : dtype_u
138 The reference solution.
139 """
141 me = self.dtype_u(self.init)
143 # fill initial conditions
144 me[0] = 0.0 # v1
145 me[1] = 0.0 # v2
146 me[2] = 0.0 # p3
148 if t > 0.0:
149 if u_init is not None:
150 if t_init is None:
151 raise ValueError(
152 'Please supply `t_init` when you want to get the exact solution from a point that \
153is not 0!'
154 )
155 me = u_init
156 else:
157 t_init = 0.0
159 def rhs(t, u):
160 f = self.eval_f(u, t)
161 return f.impl + f.expl # evaluate only explicitly rather than IMEX
163 tol = 100 * np.finfo(float).eps
165 me[:] = solve_ivp(rhs, (t_init, t), me, rtol=tol, atol=tol).y[:, -1]
167 return me