Coverage for pySDC/implementations/problem_classes/NonlinearSchroedinger_MPIFFT.py: 93%
60 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
1import numpy as np
2from scipy.optimize import newton_krylov
3from scipy.optimize import NoConvergence
5from pySDC.core.errors import ProblemError
6from pySDC.core.problem import WorkCounter
7from pySDC.implementations.problem_classes.generic_MPIFFT_Laplacian import IMEX_Laplacian_MPIFFT
8from pySDC.implementations.datatype_classes.mesh import mesh
11class nonlinearschroedinger_imex(IMEX_Laplacian_MPIFFT):
12 r"""
13 Example implementing the :math:`N`-dimensional nonlinear Schrödinger equation with periodic boundary conditions
15 .. math::
16 \frac{\partial u}{\partial t} = -i \Delta u + 2 c i |u|^2 u
18 for fixed parameter :math:`c` and :math:`N=2, 3`. The linear parts of the problem will be solved using
19 ``mpi4py-fft`` [1]_. *Semi-explicit* time-stepping is used here to solve the problem in the temporal dimension, i.e., the
20 Laplacian will be handled implicitly.
22 Parameters
23 ----------
24 nvars : tuple, optional
25 Spatial resolution
26 spectral : bool, optional
27 If True, the solution is computed in spectral space.
28 L : float, optional
29 Denotes the period of the function to be approximated for the Fourier transform.
30 c : float, optional
31 Nonlinearity parameter.
32 comm : MPI.COMM_World
33 Communicator for parallelisation.
35 Attributes
36 ----------
37 fft : PFFT
38 Object for parallel FFT transforms.
39 X : mesh-grid
40 Grid coordinates in real space.
41 K2 : matrix
42 Laplace operator in spectral space.
44 References
45 ----------
46 .. [1] Lisandro Dalcin, Mikael Mortensen, David E. Keyes. Fast parallel multidimensional FFT using advanced MPI.
47 Journal of Parallel and Distributed Computing (2019).
48 """
50 def __init__(self, c=1.0, **kwargs):
51 """Initialization routine"""
52 super().__init__(L=2 * np.pi, alpha=1j, dtype='D', **kwargs)
54 if not (c == 0.0 or c == 1.0):
55 raise ProblemError(f'Setup not implemented, c has to be 0 or 1, got {c}')
56 self._makeAttributeAndRegister('c', localVars=locals(), readOnly=True)
58 def _eval_explicit_part(self, u, t, f_expl):
59 f_expl[:] = self.ndim * self.c * 2j * self.xp.absolute(u) ** 2 * u
60 return f_expl
62 def u_exact(self, t, **kwargs):
63 r"""
64 Routine to compute the exact solution at time :math:`t`, see (39) from https://doi.org/10.1007/BF01017105 for details
66 Parameters
67 ----------
68 t : float
69 Time of the exact solution.
71 Returns
72 -------
73 u : dtype_u
74 The exact solution.
75 """
76 if 'u_init' in kwargs.keys() or 't_init' in kwargs.keys():
77 self.logger.warning(
78 f'{type(self).__name__} uses an analytic exact solution from t=0. If you try to compute the local error, you will get the global error instead!'
79 )
81 def nls_exact_1D(t, x, c):
82 ae = 1.0 / np.sqrt(2.0) * np.exp(1j * t)
83 if c != 0:
84 u = ae * ((np.cosh(t) + 1j * np.sinh(t)) / (np.cosh(t) - 1.0 / np.sqrt(2.0) * self.xp.cos(x)) - 1.0)
85 else:
86 u = self.xp.sin(x) * np.exp(-t * 1j)
88 return u
90 me = self.dtype_u(self.init, val=0.0)
92 if self.spectral:
93 tmp = nls_exact_1D(self.ndim * t, sum(self.X), self.c)
94 me[:] = self.fft.forward(tmp)
95 else:
96 me[:] = nls_exact_1D(self.ndim * t, sum(self.X), self.c)
98 return me
101class nonlinearschroedinger_fully_implicit(nonlinearschroedinger_imex):
102 r"""
103 Example implementing the :math:`N`-dimensional nonlinear Schrödinger equation with periodic boundary conditions
105 .. math::
106 \frac{\partial u}{\partial t} = -i \Delta u + 2 c i |u|^2 u
108 for fixed parameter :math:`c` and :math:`N=2, 3`. The linear parts of the problem will be discretized using
109 ``mpi4py-fft`` [1]_. For time-stepping, the problem will be solved *fully-implicitly*, i.e., the nonlinear system containing
110 the full right-hand side is solved by GMRES method.
112 References
113 ----------
114 .. [1] https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton_krylov.html
115 """
117 dtype_u = mesh
118 dtype_f = mesh
120 def __init__(self, lintol=1e-9, liniter=99, **kwargs):
121 assert kwargs.get('useGPU', False) is False
123 super().__init__(**kwargs)
124 self._makeAttributeAndRegister('liniter', 'lintol', localVars=locals(), readOnly=False)
126 self.work_counters['newton'] = WorkCounter()
128 def eval_f(self, u, t):
129 """
130 Routine to evaluate the right-hand side of the problem.
132 Parameters
133 ----------
134 u : dtype_u
135 Current values of the numerical solution.
136 t : float
137 Current time at which the numerical solution is computed.
139 Returns
140 -------
141 f : dtype_f
142 The right-hand side of the problem.
143 """
145 f = self.dtype_f(self.init)
147 if self.spectral:
148 tmp = self.fft.backward(u)
149 tmpf = self.ndim * self.c * 2j * self.xp.absolute(tmp) ** 2 * tmp
150 f[:] = -self.K2 * 1j * u + self.fft.forward(tmpf)
152 else:
153 u_hat = self.fft.forward(u)
154 lap_u_hat = -self.K2 * 1j * u_hat
155 f[:] = self.fft.backward(lap_u_hat) + self.ndim * self.c * 2j * self.xp.absolute(u) ** 2 * u
157 self.work_counters['rhs']()
158 return f
160 def solve_system(self, rhs, factor, u0, t):
161 r"""
162 Solve the nonlinear system :math:`(1 - factor \cdot f)(\vec{u}) = \vec{rhs}` using a ``SciPy`` Newton-Krylov
163 solver. See page [1]_ for details on the solver.
165 Parameters
166 ----------
167 rhs : dtype_f
168 Right-hand side for the linear system.
169 factor : float
170 Abbrev. for the node-to-node stepsize (or any other factor required).
171 u0 : dtype_u
172 Initial guess for the iterative solver (not used here so far).
173 t : float
174 Current time (e.g. for time-dependent BCs).
176 Returns
177 -------
178 me : dtype_u
179 The solution as mesh.
180 """
181 me = self.dtype_u(self.init)
183 # assemble the nonlinear function F for the solver
184 def F(x):
185 r"""
186 Nonlinear function for the ``SciPy`` solver.
188 Args:
189 x : dtype_u
190 Current solution
191 """
192 self.work_counters['rhs'].decrement()
193 return x - factor * self.eval_f(u=x.reshape(self.init[0]), t=t).reshape(x.shape) - rhs.reshape(x.shape)
195 try:
196 sol = newton_krylov(
197 F=F,
198 xin=u0.copy(),
199 maxiter=self.liniter,
200 x_tol=self.lintol,
201 callback=self.work_counters['newton'],
202 method='gmres',
203 )
204 except NoConvergence as e:
205 sol = e.args[0]
207 me[:] = sol
208 return me