Coverage for pySDC/implementations/problem_classes/HeatEquation_ND_FD_CuPy.py: 0%
26 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import numpy as np
2import cupy as cp
3import cupyx.scipy.sparse as csp
4from cupyx.scipy.sparse.linalg import spsolve, cg # , gmres, minres
6from pySDC.core.errors import ProblemError
7from pySDC.core.problem import Problem
8from pySDC.helpers import problem_helper
9from pySDC.implementations.datatype_classes.cupy_mesh import cupy_mesh, imex_cupy_mesh
12class heatNd_forced(Problem): # pragma: no cover
13 r"""
14 This class implements the unforced :math:`N`-dimensional heat equation with periodic boundary conditions
16 .. math::
17 \frac{\partial u}{\partial t} = \nu
18 \left(
19 \frac{\partial^2 u}{\partial x^2_1} + .. + \frac{\partial^2 u}{\partial x^2_N}
20 \right)
22 for :math:`(x_1,..,x_N) \in [0, 1]^{N}` with :math:`N \leq 3`. The initial solution is of the form
24 .. math::
25 u({\bf x},0) = \prod_{i=1}^N \sin(\pi k_i x_i).
27 The spatial term is discretized using finite differences.
29 This class uses the ``CuPy`` package in order to make ``pySDC`` available for GPUs.
31 Parameters
32 ----------
33 nvars : int, optional
34 Spatial resolution (same in all dimensions). Using a tuple allows to
35 consider several dimensions, e.g ``nvars=(16,16)`` for a 2D problem.
36 nu : float, optional
37 Diffusion coefficient :math:`\nu`.
38 freq : int, optional
39 Spatial frequency :math:`k_i` of the initial conditions, can be tuple.
40 stencil_type : str, optional
41 Type of the finite difference stencil.
42 order : int, optional
43 Order of the finite difference discretization.
44 lintol : float, optional
45 Tolerance for spatial solver.
46 liniter : int, optional
47 Max. iterations number for spatial solver.
48 solver_type : str, optional
49 Solve the linear system directly or using CG.
50 bc : str, optional
51 Boundary conditions, either ``'periodic'`` or ``'dirichlet'``.
52 sigma : float, optional
53 If ``freq=-1`` and ``ndim=1``, uses a Gaussian initial solution of the form
55 .. math::
56 u(x,0) = e^{
57 \frac{\displaystyle 1}{\displaystyle 2}
58 \left(
59 \frac{\displaystyle x-1/2}{\displaystyle \sigma}
60 \right)^2
61 }
63 Attributes
64 ----------
65 A : sparse matrix (CSC)
66 FD discretization matrix of the ND grad operator.
67 Id : sparse matrix (CSC)
68 Identity matrix of the same dimension as A
69 """
71 dtype_u = cupy_mesh
72 dtype_f = imex_cupy_mesh
74 def __init__(
75 self,
76 nvars=512,
77 nu=0.1,
78 freq=2,
79 bc='periodic',
80 order=2,
81 stencil_type='center',
82 lintol=1e-12,
83 liniter=10000,
84 solver_type='direct',
85 ):
86 """Initialization routine"""
88 # make sure parameters have the correct types
89 if type(nvars) not in [int, tuple]:
90 raise ProblemError('nvars should be either tuple or int')
91 if type(freq) not in [int, tuple]:
92 raise ProblemError('freq should be either tuple or int')
94 # transforms nvars into a tuple
95 if type(nvars) is int:
96 nvars = (nvars,)
98 # automatically determine ndim from nvars
99 ndim = len(nvars)
100 if ndim > 3:
101 raise ProblemError(f'can work with up to three dimensions, got {ndim}')
103 # eventually extend freq to other dimension
104 if type(freq) is int:
105 freq = (freq,) * ndim
106 if len(freq) != ndim:
107 raise ProblemError(f'len(freq)={len(freq)}, different to ndim={ndim}')
109 # check values for freq and nvars
110 for f in freq:
111 if ndim == 1 and f == -1:
112 # use Gaussian initial solution in 1D
113 bc = 'periodic'
114 break
115 if f % 2 != 0 and bc == 'periodic':
116 raise ProblemError('need even number of frequencies due to periodic BCs')
117 for nvar in nvars:
118 if nvar % 2 != 0 and bc == 'periodic':
119 raise ProblemError('the setup requires nvars = 2^p per dimension')
120 if (nvar + 1) % 2 != 0 and bc == 'dirichlet-zero':
121 raise ProblemError('setup requires nvars = 2^p - 1')
122 if ndim > 1 and nvars[1:] != nvars[:-1]:
123 raise ProblemError('need a square domain, got %s' % nvars)
125 # invoke super init, passing number of dofs, dtype_u and dtype_f
126 super().__init__(init=(nvars[0] if ndim == 1 else nvars, None, cp.dtype('float64')))
127 self._makeAttributeAndRegister(
128 'nvars',
129 'nu',
130 'freq',
131 'bc',
132 'order',
133 'stencil_type',
134 'lintol',
135 'liniter',
136 'solver_type',
137 localVars=locals(),
138 readOnly=True,
139 )
141 # compute dx (equal in both dimensions) and get discretization matrix A
142 if self.bc == 'periodic':
143 self.dx = 1.0 / self.nvars[0]
144 xvalues = cp.array([i * self.dx for i in range(self.nvars[0])])
145 elif self.bc == 'dirichlet-zero':
146 self.dx = 1.0 / (self.nvars[0] + 1)
147 xvalues = cp.array([(i + 1) * self.dx for i in range(self.nvars[0])])
148 else:
149 raise ProblemError(f'Boundary conditions {self.bc} not implemented.')
151 self.A, _ = problem_helper.get_finite_difference_matrix(
152 derivative=2,
153 order=self.order,
154 stencil_type=self.stencil_type,
155 dx=self.dx,
156 size=self.nvars[0],
157 dim=self.ndim,
158 bc=self.bc,
159 cupy=True,
160 )
161 self.A *= self.nu
163 self.xv = cp.meshgrid(*[xvalues for _ in range(self.ndim)])
164 self.Id = csp.eye(np.prod(self.nvars), format='csc')
166 @property
167 def ndim(self):
168 """Number of dimensions of the spatial problem"""
169 return len(self.nvars)
171 def eval_f(self, u, t):
172 """
173 Routine to evaluate the right-hand side of the problem.
175 Parameters
176 ----------
177 u : dtype_u
178 Current values of the numerical solution.
179 t : float
180 Current time of the numerical solution is computed.
182 Returns
183 -------
184 f : dtype_f
185 The right-hand side of the problem.
186 """
188 f = self.dtype_f(self.init)
189 f.impl[:] = self.A.dot(u.flatten()).reshape(self.nvars)
190 if self.ndim == 1:
191 f.expl[:] = cp.sin(np.pi * self.freq[0] * self.xv[0]) * (
192 self.nu * np.pi**2 * sum([freq**2 for freq in self.freq]) * cp.cos(t) - cp.sin(t)
193 )
194 elif self.ndim == 2:
195 f.expl[:] = (
196 cp.sin(np.pi * self.freq[0] * self.xv[0])
197 * cp.sin(np.pi * self.freq[1] * self.xv[1])
198 * (self.nu * np.pi**2 * sum([freq**2 for freq in self.freq]) * cp.cos(t) - cp.sin(t))
199 )
200 elif self.ndim == 3:
201 f.expl[:] = (
202 cp.sin(np.pi * self.freq[0] * self.xv[0])
203 * cp.sin(np.pi * self.freq[1] * self.xv[1])
204 * cp.sin(np.pi * self.freq[2] * self.xv[2])
205 * (self.nu * np.pi**2 * sum([freq**2 for freq in self.freq]) * cp.cos(t) - cp.sin(t))
206 )
208 return f
210 def solve_system(self, rhs, factor, u0, t):
211 r"""
212 Simple linear solver for :math:`(I-factor\cdot A)\vec{u}=\vec{rhs}`.
214 Parameters
215 ----------
216 rhs : dtype_f
217 Right-hand side for the linear system.
218 factor : float
219 Abbrev. for the local stepsize (or any other factor required).
220 u0 : dtype_u
221 Initial guess for the iterative solver.
222 t : float
223 Current time (e.g. for time-dependent BCs).
225 Returns
226 -------
227 me : dtype_u
228 Solution.
229 """
231 me = self.dtype_u(self.init)
233 if self.solver_type == 'direct':
234 me[:] = spsolve(self.Id - factor * self.A, rhs.flatten()).reshape(self.nvars)
235 elif self.solver_type == 'CG':
236 me[:] = cg(
237 self.Id - factor * self.A,
238 rhs.flatten(),
239 x0=u0.flatten(),
240 tol=self.lintol,
241 maxiter=self.liniter,
242 atol=0,
243 )[0].reshape(self.nvars)
244 else:
245 raise NotImplementedError(f'Solver {self.solver_type} not implemented in GPU heat equation!')
246 return me
248 def u_exact(self, t):
249 r"""
250 Routine to compute the exact solution at time :math:`t`.
252 Parameters
253 ----------
254 t : float
255 Time of the exact solution.
257 Returns
258 -------
259 me : dtype_u
260 Exact solution.
261 """
263 me = self.dtype_u(self.init)
265 if self.ndim == 1:
266 me[:] = cp.sin(np.pi * self.freq[0] * self.xv[0]) * cp.cos(t)
267 elif self.ndim == 2:
268 me[:] = cp.sin(np.pi * self.freq[0] * self.xv[0]) * cp.sin(np.pi * self.freq[1] * self.xv[1]) * cp.cos(t)
269 elif self.ndim == 3:
270 me[:] = (
271 cp.sin(np.pi * self.freq[0] * self.xv[0])
272 * cp.sin(np.pi * self.freq[1] * self.xv[1])
273 * cp.sin(np.pi * self.freq[2] * self.xv[2])
274 * cp.cos(t)
275 )
276 return me
279class heatNd_unforced(heatNd_forced):
280 r"""
281 This class implements the forced :math:`N`-dimensional heat equation with periodic boundary conditions
283 .. math::
284 \frac{\partial u}{\partial t} = \nu
285 \left(
286 \frac{\partial^2 u}{\partial x^2_1} + .. + \frac{\partial^2 u}{\partial x^2_N}
287 \right) + f({\bf x}, t)
289 for :math:`(x_1,..,x_N) \in [0, 1]^{N}` with :math:`N \leq 3`, and forcing term
291 .. math::
292 f({\bf x}, t) = \prod_{i=1}^N \sin(\pi k_i x_i) \left(
293 \nu \pi^2 \sum_{i=1}^N k_i^2 \cos(t) - \sin(t)
294 \right),
296 where :math:`k_i` denotes the frequency in the :math:`i^{th}` dimension. The exact solution is
298 .. math::
299 u({\bf x}, t) = \prod_{i=1}^N \sin(\pi k_i x_i) \cos(t).
301 The spatial term is discretized using finite differences.
303 The implementation is this class uses the ``CuPy`` package in order to make ``pySDC`` available for GPUs.
304 """
306 dtype_f = cupy_mesh
308 def eval_f(self, u, t):
309 """
310 Routine to evaluate the right-hand side of the problem.
312 Parameters
313 ----------
314 u : dtype_u
315 Current values of the numerical solution.
316 t : float
317 Current time of the numerical solution is computed.
319 Returns
320 -------
321 f : dtype_f
322 The right-hand side of the problem.
323 """
325 f = self.dtype_f(self.init)
326 f[:] = self.A.dot(u.flatten()).reshape(self.nvars)
328 return f
330 def u_exact(self, t):
331 r"""
332 Routine to compute the exact solution at time :math:`t`.
334 Parameters
335 ----------
336 t : float
337 Time of the exact solution.
339 Returns
340 -------
341 me : dtype_u
342 The exact solution.
343 """
345 me = self.dtype_u(self.init)
347 if self.ndim == 1:
348 rho = (2.0 - 2.0 * cp.cos(np.pi * self.freq[0] * self.dx)) / self.dx**2
349 me[:] = cp.sin(np.pi * self.freq[0] * self.xv[0]) * cp.exp(-t * self.nu * rho)
350 elif self.ndim == 2:
351 rho = (2.0 - 2.0 * cp.cos(np.pi * self.freq[0] * self.dx)) / self.dx**2 + (
352 2.0 - 2.0 * cp.cos(np.pi * self.freq[1] * self.dx)
353 ) / self.dx**2
355 me[:] = (
356 cp.sin(np.pi * self.freq[0] * self.xv[0])
357 * cp.sin(np.pi * self.freq[1] * self.xv[1])
358 * cp.exp(-t * self.nu * rho)
359 )
360 elif self.ndim == 3:
361 rho = (
362 (2.0 - 2.0 * cp.cos(np.pi * self.freq[0] * self.dx)) / self.dx**2
363 + (2.0 - 2.0 * cp.cos(np.pi * self.freq[1] * self.dx))
364 + (2.0 - 2.0 * cp.cos(np.pi * self.freq[2] * self.dx)) / self.dx**2
365 )
366 me[:] = (
367 cp.sin(np.pi * self.freq[0] * self.xv[0])
368 * cp.sin(np.pi * self.freq[1] * self.xv[1])
369 * cp.sin(np.pi * self.freq[2] * self.xv[2])
370 * cp.exp(-t * self.nu * rho)
371 )
373 return me