Coverage for pySDC/implementations/problem_classes/HeatEquation_2D_PETSc_forced.py: 100%

90 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-09 14:59 +0000

1import numpy as np 

2from petsc4py import PETSc 

3 

4from pySDC.core.errors import ParameterError, ProblemError 

5from pySDC.core.problem import Problem 

6from pySDC.implementations.datatype_classes.petsc_vec import petsc_vec, petsc_vec_imex 

7 

8 

9# noinspection PyUnusedLocal 

10class heat2d_petsc_forced(Problem): 

11 r""" 

12 Example implementing the forced two-dimensional heat equation with Dirichlet boundary conditions 

13 :math:`(x, y) \in [0,1]^2` 

14 

15 .. math:: 

16 \frac{\partial u}{\partial t} = \nu 

17 \left( 

18 \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} 

19 \right) + f(x, y, t) 

20 

21 and forcing term :math:`f(x, y, t)` such that the exact solution is 

22 

23 .. math:: 

24 u(x, y, t) = \sin(2 \pi x) \sin(2 \pi y) \cos(t). 

25 

26 The spatial discretization uses central finite differences and is realized with ``PETSc`` [1]_, [2]_. 

27 

28 Parameters 

29 ---------- 

30 cnvars : tuple, optional 

31 Spatial resolution for the 2D problem, e.g. ``cnvars=(16, 16)``. 

32 nu : float, optional 

33 Diffusion coefficient :math:`\nu`. 

34 freq : int, optional 

35 Spatial frequency of the initial conditions (equal for both dimensions). 

36 refine : int, optional 

37 Defines the refinement of the mesh, e.g. ``refine=2`` means the mesh is refined with factor 2. 

38 comm : COMM_WORLD 

39 Communicator for ``PETSc``. 

40 sol_tol : float, optional 

41 Tolerance that the solver needs to satisfy for termination. 

42 sol_maxiter : int, optional 

43 Maximum number of iterations for the solver to terminate. 

44 

45 Attributes 

46 ---------- 

47 A : PETSc matrix object 

48 Second-order FD discretization of the 2D Laplace operator. 

49 Id : PETSc matrix object 

50 Identity matrix. 

51 dx : float 

52 Distance between two spatial nodes in x direction. 

53 dy : float 

54 Distance between two spatial nodes in y direction. 

55 ksp : object 

56 ``PETSc`` linear solver object. 

57 ksp_ncalls : int 

58 Calls of ``PETSc``'s linear solver object. 

59 ksp_itercount : int 

60 Iterations done by ``PETSc``'s linear solver object. 

61 

62 References 

63 ---------- 

64 .. [1] PETSc Web page. Satish Balay et al. https://petsc.org/ (2023). 

65 .. [2] Parallel distributed computing using Python. Lisandro D. Dalcin, Rodrigo R. Paz, Pablo A. Kler, 

66 Alejandro Cosimo. Advances in Water Resources (2011). 

67 """ 

68 

69 dtype_u = petsc_vec 

70 dtype_f = petsc_vec_imex 

71 

72 def __init__(self, cnvars, nu, freq, refine, comm=PETSc.COMM_WORLD, sol_tol=1e-10, sol_maxiter=None): 

73 """Initialization routine""" 

74 # make sure parameters have the correct form 

75 if len(cnvars) != 2: 

76 raise ProblemError('this is a 2d example, got %s' % cnvars) 

77 

78 # create DMDA object which will be used for all grid operations 

79 da = PETSc.DMDA().create([cnvars[0], cnvars[1]], stencil_width=1, comm=comm) 

80 for _ in range(refine): 

81 da = da.refine() 

82 

83 # invoke super init, passing number of dofs, dtype_u and dtype_f 

84 super().__init__(init=da) 

85 self._makeAttributeAndRegister( 

86 'cnvars', 

87 'nu', 

88 'freq', 

89 'comm', 

90 'refine', 

91 'comm', 

92 'sol_tol', 

93 'sol_maxiter', 

94 localVars=locals(), 

95 readOnly=True, 

96 ) 

97 

98 # compute dx, dy and get local ranges 

99 self.dx = 1.0 / (self.init.getSizes()[0] - 1) 

100 self.dy = 1.0 / (self.init.getSizes()[1] - 1) 

101 (self.xs, self.xe), (self.ys, self.ye) = self.init.getRanges() 

102 

103 # compute discretization matrix A and identity 

104 self.A = self.__get_A() 

105 self.Id = self.__get_Id() 

106 

107 # setup solver 

108 self.ksp = PETSc.KSP() 

109 self.ksp.create(comm=self.comm) 

110 self.ksp.setType('gmres') 

111 pc = self.ksp.getPC() 

112 pc.setType('none') 

113 # pc.setType('hypre') 

114 # self.ksp.setInitialGuessNonzero(True) 

115 self.ksp.setFromOptions() 

116 self.ksp.setTolerances(rtol=self.sol_tol, atol=self.sol_tol, max_it=self.sol_maxiter) 

117 

118 self.ksp_ncalls = 0 

119 self.ksp_itercount = 0 

120 

121 def __get_A(self): 

122 r""" 

123 Helper function to assemble ``PETSc`` matrix A. 

124 

125 Returns 

126 ------- 

127 A : PETSc matrix object 

128 Matrix A defining the 2D Laplace operator. 

129 """ 

130 # create matrix and set basic options 

131 A = self.init.createMatrix() 

132 A.setType('aij') # sparse 

133 A.setFromOptions() 

134 A.setPreallocationNNZ((5, 5)) 

135 A.setUp() 

136 

137 # fill matrix 

138 A.zeroEntries() 

139 row = PETSc.Mat.Stencil() 

140 col = PETSc.Mat.Stencil() 

141 mx, my = self.init.getSizes() 

142 (xs, xe), (ys, ye) = self.init.getRanges() 

143 for j in range(ys, ye): 

144 for i in range(xs, xe): 

145 row.index = (i, j) 

146 row.field = 0 

147 if i == 0 or j == 0 or i == mx - 1 or j == my - 1: 

148 A.setValueStencil(row, row, 1.0) 

149 else: 

150 diag = self.nu * (-2.0 / self.dx**2 - 2.0 / self.dy**2) 

151 for index, value in [ 

152 ((i, j - 1), self.nu / self.dy**2), 

153 ((i - 1, j), self.nu / self.dx**2), 

154 ((i, j), diag), 

155 ((i + 1, j), self.nu / self.dx**2), 

156 ((i, j + 1), self.nu / self.dy**2), 

157 ]: 

158 col.index = index 

159 col.field = 0 

160 A.setValueStencil(row, col, value) 

161 A.assemble() 

162 

163 return A 

164 

165 def __get_Id(self): 

166 r""" 

167 Helper function to assemble ``PETSc`` identity matrix. 

168 

169 Returns 

170 ------- 

171 Id : PETSc matrix object 

172 Identity matrix. 

173 """ 

174 

175 # create matrix and set basic options 

176 Id = self.init.createMatrix() 

177 Id.setType('aij') # sparse 

178 Id.setFromOptions() 

179 Id.setPreallocationNNZ((1, 1)) 

180 Id.setUp() 

181 

182 # fill matrix 

183 Id.zeroEntries() 

184 row = PETSc.Mat.Stencil() 

185 (xs, xe), (ys, ye) = self.init.getRanges() 

186 for j in range(ys, ye): 

187 for i in range(xs, xe): 

188 row.index = (i, j) 

189 row.field = 0 

190 Id.setValueStencil(row, row, 1.0) 

191 

192 Id.assemble() 

193 

194 return Id 

195 

196 def eval_f(self, u, t): 

197 """ 

198 Routine to evaluate the right-hand side of the problem. 

199 

200 Parameters 

201 ---------- 

202 u : dtype_u 

203 Current values of the numerical solution. 

204 t : float 

205 Current time at which the numerical solution is computed at. 

206 

207 Returns 

208 ------- 

209 f : dtype_f 

210 Right-hand side of the problem. 

211 """ 

212 

213 f = self.dtype_f(self.init) 

214 # evaluate Au for implicit part 

215 self.A.mult(u, f.impl) 

216 

217 # evaluate forcing term for explicit part 

218 fa = self.init.getVecArray(f.expl) 

219 xv, yv = np.meshgrid(range(self.xs, self.xe), range(self.ys, self.ye), indexing='ij') 

220 fa[self.xs : self.xe, self.ys : self.ye] = ( 

221 -np.sin(np.pi * self.freq * xv * self.dx) 

222 * np.sin(np.pi * self.freq * yv * self.dy) 

223 * (np.sin(t) - self.nu * 2.0 * (np.pi * self.freq) ** 2 * np.cos(t)) 

224 ) 

225 

226 return f 

227 

228 def solve_system(self, rhs, factor, u0, t): 

229 r""" 

230 KSP linear solver for :math:`(I - factor \cdot A) \vec{u} = \vec{rhs}`. 

231 

232 Parameters 

233 ---------- 

234 rhs : dtype_f 

235 Right-hand side for the linear system. 

236 factor : float 

237 Abbrev. for the local stepsize (or any other factor required). 

238 u0 : dtype_u 

239 Initial guess for the iterative solver. 

240 t : float 

241 Current time (e.g. for time-dependent BCs). 

242 

243 Returns 

244 ------- 

245 me : dtype_u 

246 Solution. 

247 """ 

248 

249 me = self.dtype_u(u0) 

250 self.ksp.setOperators(self.Id - factor * self.A) 

251 self.ksp.solve(rhs, me) 

252 self.ksp_ncalls += 1 

253 self.ksp_itercount += int(self.ksp.getIterationNumber()) 

254 return me 

255 

256 def u_exact(self, t): 

257 r""" 

258 Routine to compute the exact solution at time :math:`t`. 

259 

260 Parameters 

261 ---------- 

262 t : float 

263 Time of the exact solution. 

264 

265 Returns 

266 ------- 

267 me : dtype_u 

268 Exact solution. 

269 """ 

270 

271 me = self.dtype_u(self.init) 

272 xa = self.init.getVecArray(me) 

273 for i in range(self.xs, self.xe): 

274 for j in range(self.ys, self.ye): 

275 xa[i, j] = np.sin(np.pi * self.freq * i * self.dx) * np.sin(np.pi * self.freq * j * self.dy) * np.cos(t) 

276 

277 return me