Coverage for pySDC/implementations/problem_classes/GrayScott_1D_FEniCS_implicit.py: 0%

85 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-09 14:59 +0000

1import logging 

2import random 

3 

4import dolfin as df 

5import numpy as np 

6 

7from pySDC.core.errors import ParameterError 

8from pySDC.core.problem import Problem 

9from pySDC.implementations.datatype_classes.fenics_mesh import fenics_mesh 

10 

11 

12# noinspection PyUnusedLocal 

13class fenics_grayscott(Problem): 

14 r""" 

15 The Gray-Scott system [1]_ describes a reaction-diffusion process of two substances :math:`u` and :math:`v`, 

16 where they diffuse over time. During the reaction :math:`u` is used up with overall decay rate :math:`B`, 

17 whereas :math:`v` is produced with feed rate :math:`A`. :math:`D_u,\, D_v` are the diffusion rates for 

18 :math:`u,\, v`. This process is described by the one-dimensional model using Dirichlet boundary conditions 

19 

20 .. math:: 

21 \frac{\partial u}{\partial t} = D_u \Delta u - u v^2 + A (1 - u), 

22 

23 .. math:: 

24 \frac{\partial v}{\partial t} = D_v \Delta v + u v^2 - B u 

25 

26 for :math:`x \in \Omega:=[0, 100]`. The *weak formulation* of the problem can be obtained by multiplying the 

27 system with a test function :math:`q`: 

28 

29 .. math:: 

30 \int_\Omega u_t q\,dx = \int_\Omega D_u \Delta u q - u v^2 q + A (1 - u) q\,dx, 

31 

32 .. math:: 

33 \int_\Omega v_t q\,dx = \int_\Omega D_v \Delta v q + u v^2 q - B u q\,dx, 

34 

35 The spatial solve of the weak formulation is realized by ``FEniCS`` [2]_. 

36 

37 Parameters 

38 ---------- 

39 c_nvars : int, optional 

40 Spatial resolution, i.e., number of degrees of freedom in space. 

41 t0 : float, optional 

42 Starting time. 

43 family : str, optional 

44 Indicates the family of elements used to create the function space 

45 for the trail and test functions. The default is ``'CG'``, which are the class 

46 of Continuous Galerkin, a *synonym* for the Lagrange family of elements, see [3]_. 

47 order : int, optional 

48 Defines the order of the elements in the function space. 

49 refinements : list or tuple, optional 

50 Defines the refinement for the spatial grid. Needs to be a list or tuple, e.g. 

51 ``refinements=[2, 2]`` or ``refinements=(2, 2)``. 

52 Du : float, optional 

53 Diffusion rate for :math:`u`. 

54 Dv: float, optional 

55 Diffusion rate for :math:`v`. 

56 A : float, optional 

57 Feed rate for :math:`v`. 

58 B : float, optional 

59 Overall decay rate for :math:`u`. 

60 

61 Attributes 

62 ---------- 

63 V : FunctionSpace 

64 Defines the function space of the trial and test functions. 

65 w : Function 

66 Function for the right-hand side. 

67 w1 : Function 

68 Split of w, part 1. 

69 w2 : Function 

70 Split of w, part 2. 

71 F1 : scalar, vector, matrix or higher rank tensor 

72 Weak form of right-hand side, first part. 

73 F2 : scalar, vector, matrix or higher rank tensor 

74 Weak form of right-hand side, second part. 

75 F : scalar, vector, matrix or higher rank tensor 

76 Weak form of full right-hand side. 

77 M : matrix 

78 Full mass matrix for both parts. 

79 

80 References 

81 ---------- 

82 .. [1] Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms 

83 of multistability. P. Gray, S. K. Scott. Chem. Eng. Sci. 38, 1 (1983). 

84 .. [2] The FEniCS Project Version 1.5. M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, 

85 C. Richardson, J. Ring, M. E. Rognes, G. N. Wells. Archive of Numerical Software (2015). 

86 .. [3] Automated Solution of Differential Equations by the Finite Element Method. A. Logg, K.-A. Mardal, G. N. 

87 Wells and others. Springer (2012). 

88 """ 

89 

90 dtype_u = fenics_mesh 

91 dtype_f = fenics_mesh 

92 

93 def __init__(self, c_nvars=256, t0=0.0, family='CG', order=4, refinements=None, Du=1.0, Dv=0.01, A=0.09, B=0.086): 

94 """Initialization routine""" 

95 

96 if refinements is None: 

97 refinements = [1, 0] 

98 

99 # define the Dirichlet boundary 

100 def Boundary(x, on_boundary): 

101 return on_boundary 

102 

103 # set logger level for FFC and dolfin 

104 df.set_log_level(df.WARNING) 

105 logging.getLogger('FFC').setLevel(logging.WARNING) 

106 

107 # set solver and form parameters 

108 df.parameters["form_compiler"]["optimize"] = True 

109 df.parameters["form_compiler"]["cpp_optimize"] = True 

110 

111 # set mesh and refinement (for multilevel) 

112 mesh = df.IntervalMesh(c_nvars, 0, 100) 

113 for _ in range(refinements): 

114 mesh = df.refine(mesh) 

115 

116 # define function space for future reference 

117 V = df.FunctionSpace(mesh, family, order) 

118 self.V = V * V 

119 

120 # invoke super init, passing number of dofs 

121 super(fenics_grayscott).__init__(V) 

122 self._makeAttributeAndRegister( 

123 'c_nvars', 't0', 'family', 'order', 'refinements', 'Du', 'Dv', 'A', 'B', localVars=locals(), readOnly=True 

124 ) 

125 # rhs in weak form 

126 self.w = df.Function(self.V) 

127 q1, q2 = df.TestFunctions(self.V) 

128 

129 self.w1, self.w2 = df.split(self.w) 

130 

131 self.F1 = ( 

132 -self.Du * df.inner(df.nabla_grad(self.w1), df.nabla_grad(q1)) 

133 - self.w1 * (self.w2**2) * q1 

134 + self.A * (1 - self.w1) * q1 

135 ) * df.dx 

136 self.F2 = ( 

137 -self.Dv * df.inner(df.nabla_grad(self.w2), df.nabla_grad(q2)) 

138 + self.w1 * (self.w2**2) * q2 

139 - self.B * self.w2 * q2 

140 ) * df.dx 

141 self.F = self.F1 + self.F2 

142 

143 # mass matrix 

144 u1, u2 = df.TrialFunctions(self.V) 

145 a_M = u1 * q1 * df.dx 

146 M1 = df.assemble(a_M) 

147 a_M = u2 * q2 * df.dx 

148 M2 = df.assemble(a_M) 

149 self.M = M1 + M2 

150 

151 def __invert_mass_matrix(self, u): 

152 r""" 

153 Helper routine to invert mass matrix. 

154 

155 Parameters 

156 ---------- 

157 u : dtype_u 

158 Current values of the numerical solution. 

159 

160 Returns 

161 ------- 

162 me : dtype_u 

163 The product :math:`M^{-1} \vec{u}`. 

164 """ 

165 

166 me = self.dtype_u(self.V) 

167 

168 A = 1.0 * self.M 

169 b = self.dtype_u(u) 

170 

171 df.solve(A, me.values.vector(), b.values.vector()) 

172 

173 return me 

174 

175 def solve_system(self, rhs, factor, u0, t): 

176 r""" 

177 Dolfin's linear solver for :math:`(M - factor \cdot A) \vec{u} = \vec{rhs}`. 

178 

179 Parameters 

180 ---------- 

181 rhs : dtype_f 

182 Right-hand side for the nonlinear system. 

183 factor : float 

184 Abbrev. for the node-to-node stepsize (or any other factor required). 

185 u0 : dtype_u 

186 Initial guess for the iterative solver (not used here so far). 

187 t : float 

188 Current time. 

189 

190 Returns 

191 ------- 

192 me : dtype_u 

193 Solution as mesh. 

194 """ 

195 

196 sol = self.dtype_u(self.V) 

197 

198 self.w.assign(sol.values) 

199 

200 # fixme: is this really necessary to do each time? 

201 q1, q2 = df.TestFunctions(self.V) 

202 w1, w2 = df.split(self.w) 

203 r1, r2 = df.split(rhs.values) 

204 F1 = w1 * q1 * df.dx - factor * self.F1 - r1 * q1 * df.dx 

205 F2 = w2 * q2 * df.dx - factor * self.F2 - r2 * q2 * df.dx 

206 F = F1 + F2 

207 du = df.TrialFunction(self.V) 

208 J = df.derivative(F, self.w, du) 

209 

210 problem = df.NonlinearVariationalProblem(F, self.w, [], J) 

211 solver = df.NonlinearVariationalSolver(problem) 

212 

213 prm = solver.parameters 

214 prm['newton_solver']['absolute_tolerance'] = 1e-09 

215 prm['newton_solver']['relative_tolerance'] = 1e-08 

216 prm['newton_solver']['maximum_iterations'] = 100 

217 prm['newton_solver']['relaxation_parameter'] = 1.0 

218 

219 solver.solve() 

220 

221 sol.values.assign(self.w) 

222 

223 return sol 

224 

225 def eval_f(self, u, t): 

226 """ 

227 Routine to evaluate both parts of the right-hand side. 

228 

229 Parameters 

230 ---------- 

231 u : dtype_u 

232 Current values of the numerical solution. 

233 t : float 

234 Current time at which the numerical solution is computed. 

235 

236 Returns 

237 ------- 

238 f : dtype_f 

239 The right-hand side divided into two parts. 

240 """ 

241 

242 f = self.dtype_f(self.V) 

243 

244 self.w.assign(u.values) 

245 f.values = df.Function(self.V, df.assemble(self.F)) 

246 

247 f = self.__invert_mass_matrix(f) 

248 

249 return f 

250 

251 def u_exact(self, t): 

252 r""" 

253 Routine to compute the exact solution at time :math:`t`. 

254 

255 Parameters 

256 ---------- 

257 t : float 

258 Time of the exact solution. 

259 

260 Returns 

261 ------- 

262 me : dtype_u 

263 Exact solution (only at :math:`t_0 = 0.0`). 

264 """ 

265 

266 class InitialConditions(df.Expression): 

267 def __init__(self): 

268 # fixme: why do we need this? 

269 random.seed(2) 

270 pass 

271 

272 def eval(self, values, x): 

273 values[0] = 1 - 0.5 * np.power(np.sin(np.pi * x[0] / 100), 100) 

274 values[1] = 0.25 * np.power(np.sin(np.pi * x[0] / 100), 100) 

275 

276 def value_shape(self): 

277 return (2,) 

278 

279 assert t == 0, 'ERROR: u_exact only valid for t=0' 

280 

281 uinit = InitialConditions() 

282 

283 me = self.dtype_u(self.V) 

284 me.values = df.interpolate(uinit, self.V) 

285 

286 return me