Coverage for pySDC/implementations/problem_classes/Brusselator.py: 86%
44 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
1import numpy as np
2from mpi4py import MPI
4from pySDC.implementations.problem_classes.generic_MPIFFT_Laplacian import IMEX_Laplacian_MPIFFT
7class Brusselator(IMEX_Laplacian_MPIFFT):
8 r"""
9 Two-dimensional Brusselator from [1]_.
10 This is a reaction-diffusion equation with non-autonomous source term:
12 .. math::
13 \frac{\partial u}{\partial t} = \varalpha \Delta u + 1 + u^2 v - 4.4u _ f(x,y,t),
14 \frac{\partial v}{\partial t} = \varalpha \Delta v + 3.4u - u^2 v
16 with the source term :math:`f(x,y,t) = 5` if :math:`(x-0.3)^2 + (y-0.6)^2 <= 0.1^2` and :math:`t >= 1.1` and 0 else.
17 We discretize in a periodic domain of length 1 and solve with an IMEX scheme based on a spectral method for the
18 Laplacian which we invert implicitly. We treat the reaction and source terms explicitly.
20 References
21 ----------
22 .. [1] https://link.springer.com/book/10.1007/978-3-642-05221-7
23 """
25 def __init__(self, alpha=0.1, **kwargs):
26 """Initialization routine"""
27 super().__init__(spectral=False, L=1.0, dtype='d', alpha=alpha, **kwargs)
29 # prepare the array with two components
30 shape = (2,) + (self.init[0])
31 self.iU = 0
32 self.iV = 1
33 self.ncomp = 2 # needed for transfer class
34 self.init = (shape, self.comm, np.dtype('float'))
36 def _eval_explicit_part(self, u, t, f_expl):
37 iU, iV = self.iU, self.iV
38 x, y = self.X[0], self.X[1]
40 # evaluate time independent part
41 f_expl[iU, ...] = 1.0 + u[iU] ** 2 * u[iV] - 4.4 * u[iU]
42 f_expl[iV, ...] = 3.4 * u[iU] - u[iU] ** 2 * u[iV]
44 # add time-dependent part
45 if t >= 1.1:
46 mask = (x - 0.3) ** 2 + (y - 0.6) ** 2 <= 0.1**2
47 f_expl[iU][mask] += 5.0
48 return f_expl
50 def eval_f(self, u, t):
51 """
52 Routine to evaluate the right-hand side of the problem.
54 Parameters
55 ----------
56 u : dtype_u
57 Current values of the numerical solution.
58 t : float
59 Current time of the numerical solution is computed.
61 Returns
62 -------
63 f : dtype_f
64 The right-hand side of the problem.
65 """
66 f = self.dtype_f(self.init)
68 # evaluate Laplacian to be solved implicitly
69 for i in [self.iU, self.iV]:
70 f.impl[i, ...] = self._eval_Laplacian(u[i], f.impl[i])
72 f.expl[:] = self._eval_explicit_part(u, t, f.expl)
74 self.work_counters['rhs']()
76 return f
78 def solve_system(self, rhs, factor, u0, t):
79 """
80 Simple FFT solver for the diffusion part.
82 Parameters
83 ----------
84 rhs : dtype_f
85 Right-hand side for the linear system.
86 factor : float
87 Abbrev. for the node-to-node stepsize (or any other factor required).
88 u0 : dtype_u
89 Initial guess for the iterative solver (not used here so far).
90 t : float
91 Current time (e.g. for time-dependent BCs).
93 Returns
94 -------
95 me : dtype_u
96 Solution.
97 """
98 me = self.dtype_u(self.init)
100 for i in [self.iU, self.iV]:
101 me[i, ...] = self._invert_Laplacian(me[i], factor, rhs[i])
103 return me
105 def u_exact(self, t, u_init=None, t_init=None):
106 r"""
107 Initial conditions.
109 Parameters
110 ----------
111 t : float
112 Time of the exact solution.
113 u_init : dtype_u
114 Initial conditions for getting the exact solution.
115 t_init : float
116 The starting time.
118 Returns
119 -------
120 me : dtype_u
121 Exact solution.
122 """
124 iU, iV = self.iU, self.iV
125 x, y = self.X[0], self.X[1]
127 me = self.dtype_u(self.init, val=0.0)
129 if t == 0:
130 me[iU, ...] = 22.0 * y * (1 - y / self.L[0]) ** (3.0 / 2.0) / self.L[0]
131 me[iV, ...] = 27.0 * x * (1 - x / self.L[0]) ** (3.0 / 2.0) / self.L[0]
132 else:
134 def eval_rhs(t, u):
135 f = self.eval_f(u.reshape(self.init[0]), t)
136 return (f.impl + f.expl).flatten()
138 me[...] = self.generate_scipy_reference_solution(eval_rhs, t, u_init, t_init)
140 return me
142 def get_fig(self): # pragma: no cover
143 """
144 Get a figure suitable to plot the solution of this problem
146 Returns
147 -------
148 self.fig : matplotlib.pyplot.figure.Figure
149 """
150 import matplotlib.pyplot as plt
151 from mpl_toolkits.axes_grid1 import make_axes_locatable
153 plt.rcParams['figure.constrained_layout.use'] = True
154 self.fig, axs = plt.subplots(1, 2, sharex=True, sharey=True, figsize=((8, 3)))
155 divider = make_axes_locatable(axs[1])
156 self.cax = divider.append_axes('right', size='3%', pad=0.03)
157 return self.fig
159 def plot(self, u, t=None, fig=None): # pragma: no cover
160 r"""
161 Plot the solution. Please supply a figure with the same structure as returned by ``self.get_fig``.
163 Parameters
164 ----------
165 u : dtype_u
166 Solution to be plotted
167 t : float
168 Time to display at the top of the figure
169 fig : matplotlib.pyplot.figure.Figure
170 Figure with the correct structure
172 Returns
173 -------
174 None
175 """
176 fig = self.get_fig() if fig is None else fig
177 axs = fig.axes
179 vmin = u.min()
180 vmax = u.max()
181 for i, label in zip([self.iU, self.iV], [r'$u$', r'$v$']):
182 im = axs[i].pcolormesh(self.X[0], self.X[1], u[i], vmin=vmin, vmax=vmax)
183 axs[i].set_aspect(1)
184 axs[i].set_title(label)
186 if t is not None:
187 fig.suptitle(f't = {t:.2e}')
188 axs[0].set_xlabel(r'$x$')
189 axs[0].set_ylabel(r'$y$')
190 fig.colorbar(im, self.cax)