Coverage for pySDC/implementations/problem_classes/AllenCahn_2D_FD.py: 96%

201 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-09 14:59 +0000

1import numpy as np 

2import scipy.sparse as sp 

3from scipy.sparse.linalg import cg 

4 

5from pySDC.core.errors import ParameterError, ProblemError 

6from pySDC.core.problem import Problem, WorkCounter 

7from pySDC.helpers import problem_helper 

8from pySDC.implementations.datatype_classes.mesh import mesh, imex_mesh, comp2_mesh 

9 

10 

11# http://www.personal.psu.edu/qud2/Res/Pre/dz09sisc.pdf 

12 

13 

14# noinspection PyUnusedLocal 

15class allencahn_fullyimplicit(Problem): 

16 r""" 

17 Example implementing the two-dimensional Allen-Cahn equation with periodic boundary conditions :math:`u \in [-1, 1]^2` 

18 

19 .. math:: 

20 \frac{\partial u}{\partial t} = \Delta u + \frac{1}{\varepsilon^2} u (1 - u^\nu) 

21 

22 for constant parameter :math:`\nu`. Initial condition are circles of the form 

23 

24 .. math:: 

25 u({\bf x}, 0) = \tanh\left(\frac{r - \sqrt{x_i^2 + y_j^2}}{\sqrt{2}\varepsilon}\right) 

26 

27 for :math:`i, j=0,..,N-1`, where :math:`N` is the number of spatial grid points. For time-stepping, the problem is 

28 treated *fully-implicitly*, i.e., the nonlinear system is solved by Newton. 

29 

30 Parameters 

31 ---------- 

32 nvars : tuple of int, optional 

33 Number of unknowns in the problem, e.g. ``nvars=(128, 128)``. 

34 nu : float, optional 

35 Problem parameter :math:`\nu`. 

36 eps : float, optional 

37 Scaling parameter :math:`\varepsilon`. 

38 newton_maxiter : int, optional 

39 Maximum number of iterations for the Newton solver. 

40 newton_tol : float, optional 

41 Tolerance for Newton's method to terminate. 

42 lin_tol : float, optional 

43 Tolerance for linear solver to terminate. 

44 lin_maxiter : int, optional 

45 Maximum number of iterations for the linear solver. 

46 radius : float, optional 

47 Radius of the circles. 

48 order : int, optional 

49 Order of the finite difference matrix. 

50 

51 Attributes 

52 ---------- 

53 A : scipy.spdiags 

54 Second-order FD discretization of the 2D laplace operator. 

55 dx : float 

56 Distance between two spatial nodes (same for both directions). 

57 xvalues : np.1darray 

58 Spatial grid points, here both dimensions have the same grid points. 

59 newton_itercount : int 

60 Number of iterations of Newton solver. 

61 lin_itercount 

62 Number of iterations of linear solver. 

63 newton_ncalls : int 

64 Number of calls of Newton solver. 

65 lin_ncalls : int 

66 Number of calls of linear solver. 

67 """ 

68 

69 dtype_u = mesh 

70 dtype_f = mesh 

71 

72 def __init__( 

73 self, 

74 nvars=(128, 128), 

75 nu=2, 

76 eps=0.04, 

77 newton_maxiter=200, 

78 newton_tol=1e-12, 

79 lin_tol=1e-8, 

80 lin_maxiter=100, 

81 inexact_linear_ratio=None, 

82 radius=0.25, 

83 order=2, 

84 ): 

85 """Initialization routine""" 

86 # we assert that nvars looks very particular here.. this will be necessary for coarsening in space later on 

87 if len(nvars) != 2: 

88 raise ProblemError('this is a 2d example, got %s' % nvars) 

89 if nvars[0] != nvars[1]: 

90 raise ProblemError('need a square domain, got %s' % nvars) 

91 if nvars[0] % 2 != 0: 

92 raise ProblemError('the setup requires nvars = 2^p per dimension') 

93 

94 # invoke super init, passing number of dofs, dtype_u and dtype_f 

95 super().__init__((nvars, None, np.dtype('float64'))) 

96 self._makeAttributeAndRegister( 

97 'nvars', 

98 'nu', 

99 'eps', 

100 'radius', 

101 'order', 

102 localVars=locals(), 

103 readOnly=True, 

104 ) 

105 self._makeAttributeAndRegister( 

106 'newton_maxiter', 

107 'newton_tol', 

108 'lin_tol', 

109 'lin_maxiter', 

110 'inexact_linear_ratio', 

111 localVars=locals(), 

112 readOnly=False, 

113 ) 

114 

115 # compute dx and get discretization matrix A 

116 self.dx = 1.0 / self.nvars[0] 

117 self.A, _ = problem_helper.get_finite_difference_matrix( 

118 derivative=2, 

119 order=self.order, 

120 stencil_type='center', 

121 dx=self.dx, 

122 size=self.nvars[0], 

123 dim=2, 

124 bc='periodic', 

125 ) 

126 self.xvalues = np.array([i * self.dx - 0.5 for i in range(self.nvars[0])]) 

127 

128 self.newton_itercount = 0 

129 self.lin_itercount = 0 

130 self.newton_ncalls = 0 

131 self.lin_ncalls = 0 

132 

133 self.work_counters['newton'] = WorkCounter() 

134 self.work_counters['rhs'] = WorkCounter() 

135 self.work_counters['linear'] = WorkCounter() 

136 

137 # noinspection PyTypeChecker 

138 def solve_system(self, rhs, factor, u0, t): 

139 """ 

140 Simple Newton solver. 

141 

142 Parameters 

143 ---------- 

144 rhs : dtype_f 

145 Right-hand side for the nonlinear system 

146 factor : float 

147 Abbrev. for the node-to-node stepsize (or any other factor required). 

148 u0 : dtype_u 

149 Initial guess for the iterative solver. 

150 t : float 

151 Current time (required here for the BC). 

152 

153 Returns 

154 ------- 

155 me : dtype_u 

156 The solution as mesh. 

157 """ 

158 

159 u = self.dtype_u(u0).flatten() 

160 z = self.dtype_u(self.init, val=0.0).flatten() 

161 nu = self.nu 

162 eps2 = self.eps**2 

163 

164 Id = sp.eye(self.nvars[0] * self.nvars[1]) 

165 

166 # start newton iteration 

167 n = 0 

168 res = 99 

169 while n < self.newton_maxiter: 

170 # form the function g with g(u) = 0 

171 g = u - factor * (self.A.dot(u) + 1.0 / eps2 * u * (1.0 - u**nu)) - rhs.flatten() 

172 

173 # if g is close to 0, then we are done 

174 res = np.linalg.norm(g, np.inf) 

175 

176 # do inexactness in the linear solver 

177 if self.inexact_linear_ratio: 

178 self.lin_tol = res * self.inexact_linear_ratio 

179 

180 if res < self.newton_tol: 

181 break 

182 

183 # assemble dg 

184 dg = Id - factor * (self.A + 1.0 / eps2 * sp.diags((1.0 - (nu + 1) * u**nu), offsets=0)) 

185 

186 # newton update: u1 = u0 - g/dg 

187 # u -= spsolve(dg, g) 

188 u -= cg( 

189 dg, g, x0=z, rtol=self.lin_tol, maxiter=self.lin_maxiter, atol=0, callback=self.work_counters['linear'] 

190 )[0] 

191 # increase iteration count 

192 n += 1 

193 # print(n, res) 

194 

195 self.work_counters['newton']() 

196 

197 # if n == self.newton_maxiter: 

198 # raise ProblemError('Newton did not converge after %i iterations, error is %s' % (n, res)) 

199 

200 me = self.dtype_u(self.init) 

201 me[:] = u.reshape(self.nvars) 

202 

203 self.newton_ncalls += 1 

204 self.newton_itercount += n 

205 

206 return me 

207 

208 def eval_f(self, u, t): 

209 """ 

210 Routine to evaluate the right-hand side of the problem. 

211 

212 Parameters 

213 ---------- 

214 u : dtype_u 

215 Current values of the numerical solution. 

216 t : float 

217 Current time of the numerical solution is computed (not used here). 

218 

219 Returns 

220 ------- 

221 f : dtype_f 

222 The right-hand side of the problem. 

223 """ 

224 f = self.dtype_f(self.init) 

225 v = u.flatten() 

226 f[:] = (self.A.dot(v) + 1.0 / self.eps**2 * v * (1.0 - v**self.nu)).reshape(self.nvars) 

227 

228 self.work_counters['rhs']() 

229 return f 

230 

231 def u_exact(self, t, u_init=None, t_init=None): 

232 r""" 

233 Routine to compute the exact solution at time :math:`t`. 

234 

235 Parameters 

236 ---------- 

237 t : float 

238 Time of the exact solution. 

239 

240 Returns 

241 ------- 

242 me : dtype_u 

243 The exact solution. 

244 """ 

245 me = self.dtype_u(self.init, val=0.0) 

246 if t > 0: 

247 

248 def eval_rhs(t, u): 

249 return self.eval_f(u.reshape(self.init[0]), t).flatten() 

250 

251 me[:] = self.generate_scipy_reference_solution(eval_rhs, t, u_init, t_init) 

252 

253 else: 

254 X, Y = np.meshgrid(self.xvalues, self.xvalues) 

255 r2 = X**2 + Y**2 

256 me[:] = np.tanh((self.radius - np.sqrt(r2)) / (np.sqrt(2) * self.eps)) 

257 

258 return me 

259 

260 

261# noinspection PyUnusedLocal 

262class allencahn_semiimplicit(allencahn_fullyimplicit): 

263 r""" 

264 This class implements the two-dimensional Allen-Cahn equation with periodic boundary conditions :math:`u \in [-1, 1]^2` 

265 

266 .. math:: 

267 \frac{\partial u}{\partial t} = \Delta u + \frac{1}{\varepsilon^2} u (1 - u^\nu) 

268 

269 for constant parameter :math:`\nu`. Initial condition are circles of the form 

270 

271 .. math:: 

272 u({\bf x}, 0) = \tanh\left(\frac{r - \sqrt{x_i^2 + y_j^2}}{\sqrt{2}\varepsilon}\right) 

273 

274 for :math:`i, j=0,..,N-1`, where :math:`N` is the number of spatial grid points. For time-stepping, the problem is 

275 treated in a *semi-implicit* way, i.e., the linear system containing the Laplacian is solved by the conjugate gradients 

276 method, and the system containing the rest of the right-hand side is only evaluated at each time. 

277 """ 

278 

279 dtype_f = imex_mesh 

280 

281 def eval_f(self, u, t): 

282 """ 

283 Routine to evaluate the right-hand side of the problem. 

284 

285 Parameters 

286 ---------- 

287 u : dtype_u 

288 Current values of the numerical solution. 

289 t : float 

290 Current time of the numerical solution is computed (not used here). 

291 

292 Returns 

293 ------- 

294 f : dtype_f 

295 The right-hand side of the problem. 

296 """ 

297 f = self.dtype_f(self.init) 

298 v = u.flatten() 

299 f.impl[:] = self.A.dot(v).reshape(self.nvars) 

300 f.expl[:] = (1.0 / self.eps**2 * v * (1.0 - v**self.nu)).reshape(self.nvars) 

301 

302 self.work_counters['rhs']() 

303 return f 

304 

305 def solve_system(self, rhs, factor, u0, t): 

306 r""" 

307 Simple linear solver for :math:`(I-factor\cdot A)\vec{u}=\vec{rhs}`. 

308 

309 Parameters 

310 ---------- 

311 rhs : dtype_f 

312 Right-hand side for the linear system. 

313 factor : float 

314 Abbrev. for the local stepsize (or any other factor required). 

315 u0 : dtype_u 

316 Initial guess for the iterative solver. 

317 t : float 

318 Current time (e.g. for time-dependent BCs). 

319 

320 Returns 

321 ------- 

322 me : dtype_u 

323 The solution as mesh. 

324 """ 

325 

326 class context: 

327 num_iter = 0 

328 

329 def callback(xk): 

330 context.num_iter += 1 

331 self.work_counters['linear']() 

332 return context.num_iter 

333 

334 me = self.dtype_u(self.init) 

335 

336 Id = sp.eye(self.nvars[0] * self.nvars[1]) 

337 

338 me[:] = cg( 

339 Id - factor * self.A, 

340 rhs.flatten(), 

341 x0=u0.flatten(), 

342 rtol=self.lin_tol, 

343 maxiter=self.lin_maxiter, 

344 atol=0, 

345 callback=callback, 

346 )[0].reshape(self.nvars) 

347 

348 self.lin_ncalls += 1 

349 self.lin_itercount += context.num_iter 

350 

351 return me 

352 

353 def u_exact(self, t, u_init=None, t_init=None): 

354 """ 

355 Routine to compute the exact solution at time t. 

356 

357 Parameters 

358 ---------- 

359 t : float 

360 Time of the exact solution. 

361 

362 Returns 

363 ------- 

364 me : dtype_u 

365 The exact solution. 

366 """ 

367 me = self.dtype_u(self.init, val=0.0) 

368 if t > 0: 

369 

370 def eval_rhs(t, u): 

371 f = self.eval_f(u.reshape(self.init[0]), t) 

372 return (f.impl + f.expl).flatten() 

373 

374 me[:] = self.generate_scipy_reference_solution(eval_rhs, t, u_init, t_init) 

375 else: 

376 me[:] = super().u_exact(t, u_init, t_init) 

377 return me 

378 

379 

380# noinspection PyUnusedLocal 

381class allencahn_semiimplicit_v2(allencahn_fullyimplicit): 

382 r""" 

383 This class implements the two-dimensional Allen-Cahn (AC) equation with periodic boundary conditions :math:`u \in [-1, 1]^2` 

384 

385 .. math:: 

386 \frac{\partial u}{\partial t} = \Delta u + \frac{1}{\varepsilon^2} u (1 - u^\nu) 

387 

388 for constant parameter :math:`\nu`. Initial condition are circles of the form 

389 

390 .. math:: 

391 u({\bf x}, 0) = \tanh\left(\frac{r - \sqrt{x_i^2 + y_j^2}}{\sqrt{2}\varepsilon}\right) 

392 

393 for :math:`i, j=0,..,N-1`, where :math:`N` is the number of spatial grid points. For time-stepping, a special AC-splitting 

394 is used to get a *semi-implicit* treatment of the problem: The term :math:`\Delta u - \frac{1}{\varepsilon^2} u^{\nu + 1}` 

395 is handled implicitly and the nonlinear system including this part will be solved by Newton. :math:`\frac{1}{\varepsilon^2} u` 

396 is only evaluated at each time. 

397 """ 

398 

399 dtype_f = imex_mesh 

400 

401 def eval_f(self, u, t): 

402 """ 

403 Routine to evaluate the right-hand side of the problem. 

404 

405 Parameters 

406 ---------- 

407 u : dtype_u 

408 Current values of the numerical solution. 

409 t : float 

410 Current time of the numerical solution is computed. 

411 

412 Returns 

413 ------- 

414 f : dtype_f 

415 The right-hand side of the problem. 

416 """ 

417 f = self.dtype_f(self.init) 

418 v = u.flatten() 

419 f.impl[:] = (self.A.dot(v) - 1.0 / self.eps**2 * v ** (self.nu + 1)).reshape(self.nvars) 

420 f.expl[:] = (1.0 / self.eps**2 * v).reshape(self.nvars) 

421 

422 return f 

423 

424 def solve_system(self, rhs, factor, u0, t): 

425 """ 

426 Simple Newton solver. 

427 

428 Parameters 

429 ---------- 

430 rhs : dtype_f 

431 Right-hand side for the nonlinear system. 

432 factor : float 

433 Abbrev. for the node-to-node stepsize (or any other factor required). 

434 u0 : dtype_u 

435 Initial guess for the iterative solver. 

436 t : float 

437 Current time (required here for the BC). 

438 

439 Returns 

440 ------- 

441 me : dtype_u 

442 The solution as mesh. 

443 """ 

444 

445 u = self.dtype_u(u0).flatten() 

446 z = self.dtype_u(self.init, val=0.0).flatten() 

447 nu = self.nu 

448 eps2 = self.eps**2 

449 

450 Id = sp.eye(self.nvars[0] * self.nvars[1]) 

451 

452 # start newton iteration 

453 n = 0 

454 res = 99 

455 while n < self.newton_maxiter: 

456 # form the function g with g(u) = 0 

457 g = u - factor * (self.A.dot(u) - 1.0 / eps2 * u ** (nu + 1)) - rhs.flatten() 

458 

459 # if g is close to 0, then we are done 

460 # res = np.linalg.norm(g, np.inf) 

461 res = np.linalg.norm(g, np.inf) 

462 

463 if res < self.newton_tol: 

464 break 

465 

466 # assemble dg 

467 dg = Id - factor * (self.A - 1.0 / eps2 * sp.diags(((nu + 1) * u**nu), offsets=0)) 

468 

469 # newton update: u1 = u0 - g/dg 

470 # u -= spsolve(dg, g) 

471 u -= cg(dg, g, x0=z, rtol=self.lin_tol, atol=0)[0] 

472 # increase iteration count 

473 n += 1 

474 # print(n, res) 

475 

476 # if n == self.newton_maxiter: 

477 # raise ProblemError('Newton did not converge after %i iterations, error is %s' % (n, res)) 

478 

479 me = self.dtype_u(self.init) 

480 me[:] = u.reshape(self.nvars) 

481 

482 self.newton_ncalls += 1 

483 self.newton_itercount += n 

484 

485 return me 

486 

487 

488# noinspection PyUnusedLocal 

489class allencahn_multiimplicit(allencahn_fullyimplicit): 

490 r""" 

491 Example implementing the two-dimensional Allen-Cahn equation with periodic boundary conditions :math:`u \in [-1, 1]^2` 

492 

493 .. math:: 

494 \frac{\partial u}{\partial t} = \Delta u + \frac{1}{\varepsilon^2} u (1 - u^\nu) 

495 

496 for constant parameter :math:`\nu`. Initial condition are circles of the form 

497 

498 .. math:: 

499 u({\bf x}, 0) = \tanh\left(\frac{r - \sqrt{x_i^2 + y_j^2}}{\sqrt{2}\varepsilon}\right) 

500 

501 for :math:`i, j=0,..,N-1`, where :math:`N` is the number of spatial grid points. For time-stepping, the problem is 

502 treated in *multi-implicit* fashion, i.e., the linear system containing the Laplacian is solved by the conjugate gradients 

503 method, and the system containing the rest of the right-hand side will be solved by Newton's method. 

504 """ 

505 

506 dtype_f = comp2_mesh 

507 

508 def eval_f(self, u, t): 

509 """ 

510 Routine to evaluate the right-hand side of the problem. 

511 

512 Parameters 

513 ---------- 

514 u : dtype_u 

515 Current values of the numerical solution. 

516 t : float 

517 Current time of the numerical solution is computed. 

518 

519 Returns 

520 ------- 

521 f : dtype_f 

522 The right-hand side of the problem. 

523 """ 

524 f = self.dtype_f(self.init) 

525 v = u.flatten() 

526 f.comp1[:] = self.A.dot(v).reshape(self.nvars) 

527 f.comp2[:] = (1.0 / self.eps**2 * v * (1.0 - v**self.nu)).reshape(self.nvars) 

528 

529 return f 

530 

531 def solve_system_1(self, rhs, factor, u0, t): 

532 r""" 

533 Simple linear solver for :math:`(I-factor\cdot A)\vec{u}=\vec{rhs}`. 

534 

535 Parameters 

536 ---------- 

537 rhs : dtype_f 

538 Right-hand side for the linear system. 

539 factor : float 

540 Abbrev. for the local stepsize (or any other factor required). 

541 u0 : dtype_u 

542 Initial guess for the iterative solver. 

543 t : float 

544 Current time (e.g. for time-dependent BCs). 

545 

546 Returns 

547 ------- 

548 me : dtype_u 

549 The solution as mesh. 

550 """ 

551 

552 class context: 

553 num_iter = 0 

554 

555 def callback(xk): 

556 context.num_iter += 1 

557 return context.num_iter 

558 

559 me = self.dtype_u(self.init) 

560 

561 Id = sp.eye(self.nvars[0] * self.nvars[1]) 

562 

563 me[:] = cg( 

564 Id - factor * self.A, 

565 rhs.flatten(), 

566 x0=u0.flatten(), 

567 rtol=self.lin_tol, 

568 maxiter=self.lin_maxiter, 

569 atol=0, 

570 callback=callback, 

571 )[0].reshape(self.nvars) 

572 

573 self.lin_ncalls += 1 

574 self.lin_itercount += context.num_iter 

575 

576 return me 

577 

578 def solve_system_2(self, rhs, factor, u0, t): 

579 """ 

580 Simple Newton solver. 

581 

582 Parameters 

583 ---------- 

584 rhs : dtype_f 

585 Right-hand side for the nonlinear system. 

586 factor : float 

587 Abbrev. for the node-to-node stepsize (or any other factor required). 

588 u0 : dtype_u 

589 Initial guess for the iterative solver. 

590 t : float 

591 Current time (required here for the BC). 

592 

593 Returns 

594 ------- 

595 me : dtype_u 

596 The solution as mesh. 

597 """ 

598 

599 u = self.dtype_u(u0).flatten() 

600 z = self.dtype_u(self.init, val=0.0).flatten() 

601 nu = self.nu 

602 eps2 = self.eps**2 

603 

604 Id = sp.eye(self.nvars[0] * self.nvars[1]) 

605 

606 # start newton iteration 

607 n = 0 

608 res = 99 

609 while n < self.newton_maxiter: 

610 # form the function g with g(u) = 0 

611 g = u - factor * (1.0 / eps2 * u * (1.0 - u**nu)) - rhs.flatten() 

612 

613 # if g is close to 0, then we are done 

614 res = np.linalg.norm(g, np.inf) 

615 

616 if res < self.newton_tol: 

617 break 

618 

619 # assemble dg 

620 dg = Id - factor * (1.0 / eps2 * sp.diags((1.0 - (nu + 1) * u**nu), offsets=0)) 

621 

622 # newton update: u1 = u0 - g/dg 

623 # u -= spsolve(dg, g) 

624 u -= cg(dg, g, x0=z, rtol=self.lin_tol, atol=0)[0] 

625 # increase iteration count 

626 n += 1 

627 # print(n, res) 

628 

629 # if n == self.newton_maxiter: 

630 # raise ProblemError('Newton did not converge after %i iterations, error is %s' % (n, res)) 

631 

632 me = self.dtype_u(self.init) 

633 me[:] = u.reshape(self.nvars) 

634 

635 self.newton_ncalls += 1 

636 self.newton_itercount += n 

637 

638 return me 

639 

640 

641# noinspection PyUnusedLocal 

642class allencahn_multiimplicit_v2(allencahn_fullyimplicit): 

643 r""" 

644 This class implements the two-dimensional Allen-Cahn (AC) equation with periodic boundary conditions :math:`u \in [-1, 1]^2` 

645 

646 .. math:: 

647 \frac{\partial u}{\partial t} = \Delta u + \frac{1}{\varepsilon^2} u (1 - u^\nu) 

648 

649 for constant parameter :math:`\nu`. The initial condition has the form of circles 

650 

651 .. math:: 

652 u({\bf x}, 0) = \tanh\left(\frac{r - \sqrt{x_i^2 + y_j^2}}{\sqrt{2}\varepsilon}\right) 

653 

654 for :math:`i, j=0,..,N-1`, where :math:`N` is the number of spatial grid points. For time-stepping, a special AC-splitting 

655 is used here to get another kind of *semi-implicit* treatment of the problem: The term :math:`\Delta u - \frac{1}{\varepsilon^2} u^{\nu + 1}` 

656 is handled implicitly and the nonlinear system including this part will be solved by Newton. :math:`\frac{1}{\varepsilon^2} u` 

657 is solved by a linear solver provided by a ``SciPy`` routine. 

658 """ 

659 

660 dtype_f = comp2_mesh 

661 

662 def eval_f(self, u, t): 

663 """ 

664 Routine to evaluate the right-hand side of the problem. 

665 

666 Parameters 

667 ---------- 

668 u : dtype_u 

669 Current values of the numerical solution. 

670 t : float 

671 Current time of the numerical solution is computed. 

672 

673 Returns 

674 ------- 

675 f : dtype_f 

676 The right-hand side of the problem. 

677 """ 

678 f = self.dtype_f(self.init) 

679 v = u.flatten() 

680 f.comp1[:] = (self.A.dot(v) - 1.0 / self.eps**2 * v ** (self.nu + 1)).reshape(self.nvars) 

681 f.comp2[:] = (1.0 / self.eps**2 * v).reshape(self.nvars) 

682 

683 return f 

684 

685 def solve_system_1(self, rhs, factor, u0, t): 

686 """ 

687 Simple Newton solver. 

688 

689 Parameters 

690 ---------- 

691 rhs : dtype_f 

692 Right-hand side for the nonlinear system. 

693 factor : float 

694 Abbrev. for the node-to-node stepsize (or any other factor required). 

695 u0 : dtype_u 

696 Initial guess for the iterative solver. 

697 t : float 

698 Current time (required here for the BC). 

699 

700 Returns 

701 ------ 

702 me : dtype_u 

703 The solution as mesh. 

704 """ 

705 

706 u = self.dtype_u(u0).flatten() 

707 z = self.dtype_u(self.init, val=0.0).flatten() 

708 nu = self.nu 

709 eps2 = self.eps**2 

710 

711 Id = sp.eye(self.nvars[0] * self.nvars[1]) 

712 

713 # start newton iteration 

714 n = 0 

715 res = 99 

716 while n < self.newton_maxiter: 

717 # form the function g with g(u) = 0 

718 g = u - factor * (self.A.dot(u) - 1.0 / eps2 * u ** (nu + 1)) - rhs.flatten() 

719 

720 # if g is close to 0, then we are done 

721 res = np.linalg.norm(g, np.inf) 

722 

723 if res < self.newton_tol: 

724 break 

725 

726 # assemble dg 

727 dg = Id - factor * (self.A - 1.0 / eps2 * sp.diags(((nu + 1) * u**nu), offsets=0)) 

728 

729 # newton update: u1 = u0 - g/dg 

730 # u -= spsolve(dg, g) 

731 u -= cg( 

732 dg, 

733 g, 

734 x0=z, 

735 rtol=self.lin_tol, 

736 atol=0, 

737 )[0] 

738 # increase iteration count 

739 n += 1 

740 # print(n, res) 

741 

742 # if n == self.newton_maxiter: 

743 # raise ProblemError('Newton did not converge after %i iterations, error is %s' % (n, res)) 

744 

745 me = self.dtype_u(self.init) 

746 me[:] = u.reshape(self.nvars) 

747 

748 self.newton_ncalls += 1 

749 self.newton_itercount += n 

750 

751 return me 

752 

753 def solve_system_2(self, rhs, factor, u0, t): 

754 r""" 

755 Simple linear solver for :math:`(I-factor\cdot A)\vec{u}=\vec{rhs}`. 

756 

757 Parameters 

758 ---------- 

759 rhs : dtype_f 

760 Right-hand side for the linear system. 

761 factor : float 

762 Abbrev. for the local stepsize (or any other factor required). 

763 u0 : dtype_u 

764 Initial guess for the iterative solver. 

765 t : float 

766 Current time (e.g. for time-dependent BCs). 

767 

768 Returns 

769 ------- 

770 me : dtype_u 

771 The solution as mesh. 

772 """ 

773 

774 me = self.dtype_u(self.init) 

775 

776 me[:] = (1.0 / (1.0 - factor * 1.0 / self.eps**2) * rhs).reshape(self.nvars) 

777 return me