Coverage for pySDC/core/collocation.py: 98%
41 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import logging
2import numpy as np
3from qmat import Q_GENERATORS
5from pySDC.core.errors import CollocationError
8class CollBase(object):
9 """
10 Generic collocation class, that contains everything to do integration over
11 intervals and between nodes.
12 It can be used to produce many kind of quadrature nodes from various
13 distribution (awesome!).
15 It is based on the two main parameters that define the nodes:
17 - node_type: the node distribution used for the collocation method
18 - quad_type: the type of quadrature used (inclusion of not of boundary)
20 Current implementation provides the following available parameter values
21 for node_type:
23 - EQUID: equidistant node distribution
24 - LEGENDRE: distribution from Legendre polynomials
25 - CHEBY-{1,2,3,4}: distribution from Chebyshev polynomials of a given kind
27 The type of quadrature can be GAUSS (only inner nodes), RADAU-LEFT
28 (inclusion of the left boundary), RADAU-RIGHT (inclusion of the right
29 boundary) and LOBATTO (inclusion of left and right boundary).
31 All coefficients are generated using
32 `qmat <https://qmat.readthedocs.io/en/latest/autoapi/qmat/qcoeff/collocation/index.html>`_.
34 Attributes:
35 num_nodes (int): number of collocation nodes
36 tleft (float): left interval point
37 tright (float): right interval point
38 nodes (numpy.ndarray): array of quadrature nodes
39 weights (numpy.ndarray): array of quadrature weights for the full interval
40 Qmat (numpy.ndarray): matrix containing the weights for tleft to node
41 Smat (numpy.ndarray): matrix containing the weights for node to node
42 delta_m (numpy.ndarray): array of distances between nodes
43 right_is_node (bool): flag to indicate whether right point is collocation node
44 left_is_node (bool): flag to indicate whether left point is collocation node
45 """
47 def __init__(self, num_nodes=None, tleft=0, tright=1, node_type='LEGENDRE', quad_type=None, **kwargs):
48 """
49 Initialization routine for a collocation object
51 Args:
52 num_nodes (int): number of collocation nodes
53 tleft (float): left interval point
54 tright (float): right interval point
55 """
57 if not num_nodes > 0:
58 raise CollocationError('at least one quadrature node required, got %s' % num_nodes)
59 if not tleft < tright:
60 raise CollocationError('interval boundaries are corrupt, got %s and %s' % (tleft, tright))
62 self.logger = logging.getLogger('collocation')
63 try:
64 self.generator = Q_GENERATORS["Collocation"](
65 nNodes=num_nodes, nodeType=node_type, quadType=quad_type, tLeft=tleft, tRight=tright
66 )
67 except Exception as e:
68 raise CollocationError(f"could not instantiate qmat generator, got error: {e}") from e
70 # Set base attributes
71 self.num_nodes = num_nodes
72 self.tleft = tleft
73 self.tright = tright
74 self.node_type = node_type
75 self.quad_type = quad_type
76 self.left_is_node = self.quad_type in ['LOBATTO', 'RADAU-LEFT']
77 self.right_is_node = self.quad_type in ['LOBATTO', 'RADAU-RIGHT']
79 # Integration order
80 self.order = self.generator.order
82 # Compute coefficients
83 self.nodes = self._getNodes = self.generator.nodes.copy()
84 self.weights = self.generator.weights.copy()
86 Q = np.zeros([num_nodes + 1, num_nodes + 1], dtype=float)
87 Q[1:, 1:] = self.generator.Q
88 self.Qmat = Q
90 S = np.zeros([num_nodes + 1, num_nodes + 1], dtype=float)
91 S[1:, 1:] = super(self.generator.__class__, self.generator).S
92 # Note: qmat redefines the S matrix for collocation with integrals,
93 # instead of differences of the Q matrix coefficients.
94 # This does not passes the pySDC tests ... however the default S computation
95 # in qmat uses Q matrix coefficients differences, and that's what we
96 # use by using the parent property from the generator object.
97 self.Smat = self._gen_Smatrix = S
99 self.delta_m = self._gen_deltas
101 @staticmethod
102 def evaluate(weights, data):
103 """
104 Evaluates the quadrature over the full interval
106 Args:
107 weights (numpy.ndarray): array of quadrature weights for the full interval
108 data (numpy.ndarray): f(x) to be integrated
110 Returns:
111 numpy.ndarray: integral over f(x) between tleft and tright
112 """
113 if not np.size(weights) == np.size(data):
114 raise CollocationError("Input size does not match number of weights, but is %s" % np.size(data))
116 return np.dot(weights, data)
118 @property
119 def _gen_deltas(self):
120 """
121 Compute distances between the nodes
123 Returns:
124 numpy.ndarray: distances between the nodes
125 """
126 M = self.num_nodes
127 delta = np.zeros(M)
128 delta[0] = self.nodes[0] - self.tleft
129 for m in np.arange(1, M):
130 delta[m] = self.nodes[m] - self.nodes[m - 1]
132 return delta