Coverage for pySDC/projects/parallelSDC/preconditioner_playground_MPI.py: 97%
151 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
1import os
2import pickle
3from collections import namedtuple
5import numpy as np
6from mpi4py import MPI
7import argparse
9import matplotlib as mpl
11mpl.use("Agg")
12import pySDC.helpers.plot_helper as plt_helper
13from pySDC.helpers.stats_helper import get_sorted
15from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI
16from pySDC.implementations.problem_classes.AdvectionEquation_ND_FD import advectionNd
17from pySDC.implementations.problem_classes.GeneralizedFisher_1D_FD_implicit import generalized_fisher
18from pySDC.implementations.problem_classes.HeatEquation_ND_FD import heatNd_unforced
19from pySDC.implementations.problem_classes.Van_der_Pol_implicit import vanderpol
20from pySDC.implementations.sweeper_classes.generic_implicit_MPI import generic_implicit_MPI
22ID = namedtuple('ID', ['setup', 'qd_type', 'param'])
25def main(comm=None):
26 # initialize level parameters (part I)
27 level_params = dict()
28 level_params['restol'] = 1e-08
30 # initialize sweeper parameters (part I)
31 sweeper_params = dict()
32 sweeper_params['quad_type'] = 'RADAU-RIGHT'
33 sweeper_params['num_nodes'] = comm.Get_size()
34 sweeper_params['comm'] = comm
36 # initialize step parameters
37 step_params = dict()
38 step_params['maxiter'] = 100
40 # initialize controller parameters
41 controller_params = dict()
42 controller_params['logger_level'] = 30
44 # set up list of Q-delta types and setups
45 qd_list = ['IEpar', 'Qpar', 'MIN', 'MIN3', 'MIN_GT']
46 setup_list = [
47 ('heat', 63, [10.0**i for i in range(-3, 3)]),
48 ('advection', 64, [10.0**i for i in range(-3, 3)]),
49 ('vanderpol', 2, [0.1 * 2**i for i in range(0, 10)]),
50 ('fisher', 63, [2**i for i in range(-2, 3)]),
51 ]
52 # setup_list = [('fisher', 63, [2 * i for i in range(1, 6)])]
54 # pre-fill results with lists of setups
55 results = dict()
56 for setup, nvars, param_list in setup_list:
57 results[setup] = (nvars, param_list)
59 # loop over all Q-delta matrix types
60 for qd_type in qd_list:
61 # assign implicit Q-delta matrix
62 sweeper_params['QI'] = qd_type
64 # loop over all setups
65 for setup, nvars, param_list in setup_list:
66 # initialize problem parameters (part I)
67 problem_params = dict()
68 if setup != 'vanderpol':
69 problem_params['nvars'] = nvars # number of degrees of freedom for each level
71 # loop over all parameters
72 for param in param_list:
73 # fill description for the controller
74 description = dict()
75 description['sweeper_class'] = generic_implicit_MPI # pass sweeper
76 description['sweeper_params'] = sweeper_params # pass sweeper parameters
77 description['step_params'] = step_params # pass step parameters
78 # description['base_transfer_class'] = base_transfer_mpi
80 print('working on: %s - %s - %s' % (qd_type, setup, param))
82 # decide which setup to take
83 if setup == 'heat':
84 problem_params['nu'] = param
85 problem_params['freq'] = 2
86 problem_params['bc'] = 'dirichlet-zero' # boundary conditions
88 level_params['dt'] = 0.1
90 description['problem_class'] = heatNd_unforced
91 description['problem_params'] = problem_params
92 description['level_params'] = level_params # pass level parameters
94 elif setup == 'advection':
95 problem_params['c'] = param
96 problem_params['order'] = 2
97 problem_params['freq'] = 2
98 problem_params['stencil_type'] = 'center' # boundary conditions
99 problem_params['bc'] = 'periodic' # boundary conditions
101 level_params['dt'] = 0.1
103 description['problem_class'] = advectionNd
104 description['problem_params'] = problem_params
105 description['level_params'] = level_params # pass level parameters
107 elif setup == 'vanderpol':
108 problem_params['newton_tol'] = 1e-09
109 problem_params['newton_maxiter'] = 20
110 problem_params['mu'] = param
111 problem_params['u0'] = np.array([2.0, 0])
113 level_params['dt'] = 0.1
115 description['problem_class'] = vanderpol
116 description['problem_params'] = problem_params
117 description['level_params'] = level_params
119 elif setup == 'fisher':
120 problem_params['nu'] = 1
121 problem_params['lambda0'] = param
122 problem_params['newton_maxiter'] = 20
123 problem_params['newton_tol'] = 1e-10
124 problem_params['interval'] = (-5, 5)
126 level_params['dt'] = 0.01
128 description['problem_class'] = generalized_fisher
129 description['problem_params'] = problem_params
130 description['level_params'] = level_params
132 else:
133 print('Setup not implemented..', setup)
134 exit()
136 # instantiate controller
137 controller = controller_nonMPI(
138 num_procs=1, controller_params=controller_params, description=description
139 )
141 # get initial values on finest level
142 P = controller.MS[0].levels[0].prob
143 uinit = P.u_exact(0)
145 # call main function to get things done...
146 uend, stats = controller.run(u0=uinit, t0=0, Tend=level_params['dt'])
148 # filter statistics by type (number of iterations)
149 iter_counts = get_sorted(stats, type='niter', sortby='time')
151 # just one time-step, grep number of iteration and store
152 niter = iter_counts[0][1]
153 id = ID(setup=setup, qd_type=qd_type, param=param)
154 results[id] = niter
156 assert len(results) == (6 + 6 + 10 + 5) * 5 + 4, 'ERROR: did not get all results, got %s' % len(results)
158 if comm.Get_rank() == 0:
159 # write out for later visualization
160 with open('data/parallelSDC_iterations_precond_MPI.pkl', 'wb') as file:
161 pickle.dump(results, file)
163 assert os.path.isfile('data/parallelSDC_iterations_precond_MPI.pkl'), 'ERROR: pickle did not create file'
166# pragma: no cover
167def plot_iterations():
168 """
169 Helper routine to plot iteration counts
170 """
172 with open('data/parallelSDC_iterations_precond_MPI.pkl', 'rb') as file:
173 results = pickle.load(file)
175 # find the lists/header required for plotting
176 qd_type_list = []
177 setup_list = []
178 for key in results.keys():
179 if isinstance(key, ID):
180 if key.qd_type not in qd_type_list:
181 qd_type_list.append(key.qd_type)
182 elif isinstance(key, str):
183 setup_list.append(key)
184 print('Found these type of preconditioners:', qd_type_list)
185 print('Found these setups:', setup_list)
187 assert len(qd_type_list) == 5, 'ERROR did not find five preconditioners, got %s' % qd_type_list
188 assert len(setup_list) == 4, 'ERROR: did not find four setup, got %s' % setup_list
190 plt_helper.setup_mpl()
191 print('post setup')
193 # loop over setups and Q-delta types: one figure per setup, all Qds in one plot
194 for setup in list(setup_list[:]):
195 plot_setup(results, setup)
196 mpl.pyplot.close("all")
197 return 0
200def plot_setup(results, setup):
201 print(f'setup of {setup}')
203 qd_type_list = ['IEpar', 'Qpar', 'MIN', 'MIN3', 'MIN_GT']
204 marker_list = ['s', 'o', '^', 'v', 'x']
205 color_list = ['r', 'g', 'b', 'c', 'm']
207 fig, ax = plt_helper.newfig(textwidth=238.96, scale=0.89)
209 for qd_type, marker, color in zip(qd_type_list, marker_list, color_list):
210 niter = np.zeros(len(results[setup][1]))
211 for key in results.keys():
212 if isinstance(key, ID):
213 if key.setup == setup and key.qd_type == qd_type:
214 xvalue = results[setup][1].index(key.param)
215 niter[xvalue] = results[key]
216 ls = '-'
217 lw = 1
218 ax.semilogx(
219 results[setup][1],
220 niter,
221 label=qd_type,
222 lw=lw,
223 linestyle=ls,
224 color=color,
225 marker=marker,
226 markeredgecolor='k',
227 )
229 if setup == 'heat':
230 xlabel = r'$\nu$'
231 elif setup == 'advection':
232 xlabel = r'$c$'
233 elif setup == 'fisher':
234 xlabel = r'$\lambda_0$'
235 elif setup == 'vanderpol':
236 xlabel = r'$\mu$'
237 else:
238 print('Setup not implemented..', setup)
239 exit()
241 ax.set_ylim(0, 60)
242 fig.legend(loc=2, ncol=1)
243 ax.set_ylabel('number of iterations')
244 ax.set_xlabel(xlabel)
245 ax.grid()
247 # save plot as PDF and PGF
248 fname = 'data/parallelSDC_preconditioner_MPI_' + setup
249 plt_helper.savefig(fname)
250 del fig, ax
252 assert os.path.isfile(fname + '.pdf'), 'ERROR: plotting did not create PDF file'
253 # assert os.path.isfile(fname + '.pgf'), 'ERROR: plotting did not create PGF file'
254 assert os.path.isfile(fname + '.png'), 'ERROR: plotting did not create PNG file'
255 print(f"Successfully stored image {fname}.png")
257 return
260if __name__ == "__main__":
261 parser = argparse.ArgumentParser()
262 parser.add_argument("action", type=str, default="", const="", nargs='?')
263 args = parser.parse_args()
264 if args.action == "":
265 comm = MPI.COMM_WORLD
266 main(comm=comm)
267 if comm.Get_rank() == 0:
268 plot_iterations()
269 elif args.action == "simulate":
270 comm = MPI.COMM_WORLD
271 main(comm=comm)
272 elif args.action == "plot":
273 plot_iterations()
274 else:
275 raise KeyError(f"Unknown action '{args.action}'. Known actions are 'simulate', 'plot', or none for both")