Coverage for pySDC/projects/parallelSDC/linearized_implicit_parallel.py: 97%
37 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
1import numpy as np
3from pySDC.implementations.sweeper_classes.generic_implicit import generic_implicit
6class linearized_implicit_parallel(generic_implicit):
7 """
8 Parallel sweeper using Newton for linearization
9 """
11 def __init__(self, params):
12 """
13 Initialization routine for the custom sweeper
15 Args:
16 params: parameters for the sweeper
17 """
19 if 'fixed_time_in_jacobian' not in params:
20 params['fixed_time_in_jacobian'] = 0
22 # call parent's initialization routine
23 super(linearized_implicit_parallel, self).__init__(params)
25 self.D, self.V = np.linalg.eig(self.QI[1:, 1:])
26 self.Vi = np.linalg.inv(self.V)
28 def update_nodes(self):
29 """
30 Update the u- and f-values at the collocation nodes -> corresponds to a single sweep over all nodes
32 Returns:
33 None
34 """
36 # get current level and problem description
37 L = self.level
38 P = L.prob
40 # only if the level has been touched before
41 assert L.status.unlocked
43 # get number of collocation nodes for easier access
44 M = self.coll.num_nodes
46 # form Jacobian on each node
47 dfdu = []
48 for m in range(M + 1):
49 dfdu.append(P.eval_jacobian(L.u[m]))
51 # form collocation problem
52 Gu = self.integrate()
53 for m in range(M):
54 Gu[m] -= L.u[m + 1] - L.u[0]
56 # transform collocation problem forward
57 Guv = []
58 for m in range(M):
59 Guv.append(P.dtype_u((P.init[0], P.init[1], np.dtype('complex128')), val=0.0 + 0.0j))
60 for j in range(M):
61 Guv[m] += self.Vi[m, j] * Gu[j]
63 # solve implicit system with Jacobians
64 uv = []
65 for m in range(M): # hell yeah, this is parallel!!
66 uv.append(
67 P.solve_system_jacobian(
68 dfdu[m], Guv[m], L.dt * self.D[m], L.u[m + 1], L.time + L.dt * self.coll.nodes[m]
69 )
70 )
72 # transform solution backward
73 for m in range(M):
74 tmp = P.dtype_u((P.init[0], P.init[1], np.dtype('complex128')), val=0.0 + 0.0j)
75 for j in range(M):
76 tmp += self.V[m, j] * uv[j]
77 L.u[m + 1][:] += np.real(tmp)
79 # evaluate f
80 for m in range(M): # hell yeah, this is parallel!!
81 L.f[m + 1] = P.eval_f(L.u[m + 1], L.time + L.dt * self.coll.nodes[m])
83 # indicate presence of new values at this level
84 L.status.updated = True
86 return None