Coverage for pySDC/projects/Performance/visualize.py: 0%
41 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
1import glob
2import json
3import numpy as np
4import pySDC.helpers.plot_helper as plt_helper
7def joint_plots(list_of_result_paths):
8 # get result data from JUBE tables
9 results = []
10 for result_path in list_of_result_paths:
11 results.append(np.genfromtxt(result_path, names=True, skip_header=1, delimiter='|', dtype=float, comments='--'))
13 # fill arrays with data
14 ncores = np.concatenate(results)['ntasks'] * np.concatenate(results)['nnodes']
15 timings_space = results[0]['timing_pat']
16 timings_spacetime = results[1]['timing_pat']
17 ideal = [timings_space[0] / (c / ncores[0]) for c in np.unique(ncores)]
19 # setup and fill plots
20 plt_helper.setup_mpl()
21 plt_helper.newfig(textwidth=238.96, scale=1.0)
23 plt_helper.plt.loglog(np.unique(ncores), ideal, 'k--', label='ideal')
24 plt_helper.plt.loglog(
25 ncores[0 : len(results[0])],
26 timings_space,
27 lw=1,
28 ls='-',
29 color='b',
30 marker='o',
31 markersize=4,
32 markeredgecolor='k',
33 label='parallel-in-space',
34 )
35 plt_helper.plt.loglog(
36 ncores[-len(results[1]) :],
37 timings_spacetime,
38 lw=1,
39 ls='-',
40 color='r',
41 marker='d',
42 markersize=4,
43 markeredgecolor='k',
44 label='parallel-in-space-time',
45 )
47 plt_helper.plt.grid()
48 plt_helper.plt.legend(loc=3, ncol=1)
49 plt_helper.plt.xlabel('Number of cores')
50 plt_helper.plt.ylabel('Time [s]')
52 # save plot, beautify
53 fname = 'data/scaling'
54 plt_helper.savefig(fname)
57def plot_data(name=''):
58 """
59 Visualization using numpy arrays (written via MPI I/O) and json description
61 Produces one png file per time-step, combine as movie via e.g.
62 > ffmpeg -i data/name_%08d.png name.mp4
64 Args:
65 name (str): name of the simulation (expects data to be in data path)
66 """
68 # get data and json files
69 json_files = sorted(glob.glob(f'./data/{name}_*.json'))
70 data_files = sorted(glob.glob(f'./data/{name}_*.dat'))
72 # setup plotting
73 plt_helper.setup_mpl()
75 for json_file, data_file in zip(json_files, data_files):
76 with open(json_file, 'r') as fp:
77 obj = json.load(fp)
79 index = json_file.split('_')[1].split('.')[0]
80 print(f'Working on step {index}...')
82 # get data and format
83 array = np.fromfile(data_file, dtype=obj['datatype'])
84 array = array.reshape(obj['shape'], order='C')
86 # plot
87 plt_helper.newfig(textwidth=238.96, scale=1.0)
88 plt_helper.plt.imshow(array, vmin=0, vmax=1, extent=[-2, 2, -2, 2], origin='lower')
90 plt_helper.plt.yticks(range(-2, 3))
91 cbar = plt_helper.plt.colorbar()
92 cbar.set_label('concentration')
93 # plt_helper.plt.title(f"Time: {obj['time']:6.4f}")
95 # save plot, beautify
96 fname = f'data/{name}_{index}'
97 plt_helper.savefig(fname, save_pgf=False, save_png=False)
100if __name__ == '__main__':
101 list_of_result_paths = [
102 'data/bench_run_SPxTS/000004/result/result.dat',
103 'data/bench_run_SPxTP/000002/result/result.dat',
104 ]
106 # joint_plots(list_of_result_paths)
107 plot_data(name='AC-bench-noforce')