Coverage for pySDC/projects/AsympConv/smoother_specrad_heatmap.py: 0%
82 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import matplotlib
2import numpy as np
3import scipy.linalg as LA
5matplotlib.use('Agg')
6import matplotlib.pyplot as plt
7from matplotlib.colors import LogNorm
9from pySDC.core.collocation import CollBase
12def compute_and_plot_specrad():
13 """
14 Compute and plot spectral radius of smoother iteration matrix for a whole range of eigenvalues
15 """
16 # setup_list = [('LU', 'to0'), ('LU', 'toinf'), ('IE', 'to0'), ('IE', 'toinf')]
17 # setup_list = [('LU', 'to0'), ('LU', 'toinf')]
18 # setup_list = [('IE', 'to0'), ('IE', 'toinf')]
19 # setup_list = [('LU', 'toinf'), ('IE', 'toinf')]
20 setup_list = [('IE', 'full'), ('LU', 'full')]
21 # setup_list = [('EX', 'to0'), ('PIC', 'to0')]
23 # set up plotting parameters
24 params = {
25 'legend.fontsize': 24,
26 'figure.figsize': (12, 8),
27 'axes.labelsize': 24,
28 'axes.titlesize': 24,
29 'xtick.labelsize': 24,
30 'ytick.labelsize': 24,
31 'lines.linewidth': 3,
32 }
33 plt.rcParams.update(params)
35 Nnodes = 3
36 Nsteps = 4
38 coll = CollBase(Nnodes, 0, 1, quad_type='RADAU-RIGHT')
39 Qmat = coll.Qmat[1:, 1:]
41 Nmat = np.zeros((Nnodes, Nnodes))
42 Nmat[:, -1] = 1
44 Emat = np.zeros((Nsteps, Nsteps))
45 np.fill_diagonal(Emat[1:, :], 1)
47 for qd_type, conv_type in setup_list:
48 if qd_type == 'LU':
49 QT = coll.Qmat[1:, 1:].T
50 [_, _, U] = LA.lu(QT, overwrite_a=True)
51 QDmat = U.T
53 elif qd_type == 'IE':
54 QI = np.zeros(np.shape(coll.Qmat))
55 for m in range(coll.num_nodes + 1):
56 QI[m, 1 : m + 1] = coll.delta_m[0:m]
57 QDmat = QI[1:, 1:]
59 elif qd_type == 'EE':
60 QE = np.zeros(np.shape(coll.Qmat))
61 for m in range(coll.num_nodes + 1):
62 QE[m, 0:m] = coll.delta_m[0:m]
63 QDmat = QE[1:, 1:]
65 elif qd_type == 'PIC':
66 QDmat = np.zeros(np.shape(coll.Qmat[1:, 1:]))
68 elif qd_type == 'EX':
69 QT = coll.Qmat[1:, 1:].T
70 [_, _, U] = LA.lu(QT, overwrite_a=True)
71 QDmat = np.tril(U.T, k=-1)
72 print(QDmat)
74 else:
75 raise NotImplementedError('qd_type %s is not implemented' % qd_type)
77 # lim_specrad = max(abs(np.linalg.eigvals(np.eye(Nnodes) - np.linalg.inv(QDmat).dot(Qmat))))
78 # print('qd_type: %s -- lim_specrad: %6.4e -- conv_type: %s' % (qd_type, lim_specrad, conv_type))
80 if conv_type == 'to0':
81 ilim_left = -4
82 ilim_right = 2
83 rlim_left = 2
84 rlim_right = -4
86 elif conv_type == 'toinf':
87 ilim_left = 0
88 ilim_right = 11
89 rlim_left = 6
90 rlim_right = 0
92 elif conv_type == 'full':
93 ilim_left = -10
94 ilim_right = 11
95 rlim_left = 10
96 rlim_right = -11
98 else:
99 raise NotImplementedError('conv_type %s is not implemented' % conv_type)
101 ilam_list = 1j * np.logspace(ilim_left, ilim_right, 201)
102 rlam_list = -1 * np.logspace(rlim_left, rlim_right, 201)
104 assert (rlim_right - rlim_left + 1) % 5 == 0
105 assert (ilim_right - ilim_left - 1) % 5 == 0
106 assert (len(rlam_list) - 1) % 5 == 0
107 assert (len(ilam_list) - 1) % 5 == 0
109 Prho = np.zeros((len(rlam_list), len(ilam_list)))
111 for idr, rlam in enumerate(rlam_list):
112 for idi, ilam in enumerate(ilam_list):
113 dxlam = rlam + ilam
115 mat = np.linalg.inv(np.eye(Nnodes * Nsteps) - dxlam * np.kron(np.eye(Nsteps), QDmat)).dot(
116 dxlam * np.kron(np.eye(Nsteps), (Qmat - QDmat)) + np.kron(Emat, Nmat)
117 )
118 mat = np.linalg.matrix_power(mat, Nnodes)
120 Prho[idr, idi] = max(abs(np.linalg.eigvals(mat)))
122 print(np.amax(Prho))
124 fig, ax = plt.subplots(figsize=(15, 10))
126 ax.set_xticks([i + 0.5 for i in range(0, len(rlam_list), int(len(rlam_list) / 5))])
127 ax.set_xticklabels(
128 [r'-$10^{%d}$' % i for i in range(rlim_left, rlim_right, int((rlim_right - rlim_left + 1) / 5))]
129 )
130 ax.set_yticks([i + 0.5 for i in range(0, len(ilam_list), int(len(ilam_list) / 5))])
131 ax.set_yticklabels(
132 [r'$10^{%d}i$' % i for i in range(ilim_left, ilim_right, int((ilim_right - ilim_left - 1) / 5))]
133 )
135 cmap = plt.get_cmap('Reds')
136 pcol = plt.pcolor(Prho.T, cmap=cmap, norm=LogNorm(vmin=1e-09, vmax=1e-00))
138 plt.colorbar(pcol)
140 plt.xlabel(r'$Re(\Delta t\lambda)$')
141 plt.ylabel(r'$Im(\Delta t\lambda)$')
143 fname = (
144 'data/heatmap_smoother_' + conv_type + '_Nsteps' + str(Nsteps) + '_M' + str(Nnodes) + '_' + qd_type + '.png'
145 )
146 plt.savefig(fname, transparent=True, bbox_inches='tight')
149if __name__ == "__main__":
150 compute_and_plot_specrad()