Coverage for pySDC/implementations/transfer_classes/TransferMesh.py: 75%
101 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
1import numpy as np
2import scipy.sparse as sp
4import pySDC.helpers.transfer_helper as th
5from pySDC.core.errors import TransferError
6from pySDC.core.space_transfer import SpaceTransfer
9class mesh_to_mesh(SpaceTransfer):
10 """
11 Custom base_transfer class, implements Transfer.py
13 This implementation can restrict and prolong between nd meshes with dirichlet-0 or periodic boundaries
14 via matrix-vector products.
16 Attributes:
17 Rspace: spatial restriction matrix, dim. Nf x Nc
18 Pspace: spatial prolongation matrix, dim. Nc x Nf
19 """
21 def __init__(self, fine_prob, coarse_prob, params):
22 """
23 Initialization routine
25 Args:
26 fine_prob: fine problem
27 coarse_prob: coarse problem
28 params: parameters for the transfer operators
29 """
31 # invoke super initialization
32 super().__init__(fine_prob, coarse_prob, params)
34 if self.params.rorder % 2 != 0:
35 raise TransferError('Need even order for restriction')
37 if self.params.iorder % 2 != 0:
38 raise TransferError('Need even order for interpolation')
40 if type(self.fine_prob.nvars) is tuple:
41 if type(self.coarse_prob.nvars) is not tuple:
42 raise TransferError('nvars parameter of coarse problem needs to be a tuple')
43 if not len(self.fine_prob.nvars) == len(self.coarse_prob.nvars):
44 raise TransferError('nvars parameter of fine and coarse level needs to have the same length')
45 elif type(self.fine_prob.nvars) is int:
46 if type(self.coarse_prob.nvars) is not int:
47 raise TransferError('nvars parameter of coarse problem needs to be an int')
48 else:
49 raise TransferError("unknow type of nvars for transfer, got %s" % self.fine_prob.nvars)
51 # we have a 1d problem
52 if type(self.fine_prob.nvars) is int:
53 # if number of variables is the same on both levels, Rspace and Pspace are identity
54 if self.coarse_prob.nvars == self.fine_prob.nvars:
55 self.Rspace = sp.eye(self.coarse_prob.nvars)
56 self.Pspace = sp.eye(self.fine_prob.nvars)
57 # assemble restriction as transpose of interpolation
58 else:
59 if not self.params.periodic:
60 fine_grid = np.array([(i + 1) * self.fine_prob.dx for i in range(self.fine_prob.nvars)])
61 coarse_grid = np.array([(i + 1) * self.coarse_prob.dx for i in range(self.coarse_prob.nvars)])
62 else:
63 fine_grid = np.array([i * self.fine_prob.dx for i in range(self.fine_prob.nvars)])
64 coarse_grid = np.array([i * self.coarse_prob.dx for i in range(self.coarse_prob.nvars)])
66 self.Pspace = th.interpolation_matrix_1d(
67 fine_grid,
68 coarse_grid,
69 k=self.params.iorder,
70 periodic=self.params.periodic,
71 equidist_nested=self.params.equidist_nested,
72 )
73 if self.params.rorder > 0:
74 restr_factor = 0.5
75 else:
76 restr_factor = 1.0
78 if self.params.iorder == self.params.rorder:
79 self.Rspace = restr_factor * self.Pspace.T
81 else:
82 self.Rspace = (
83 restr_factor
84 * th.interpolation_matrix_1d(
85 fine_grid,
86 coarse_grid,
87 k=self.params.rorder,
88 periodic=self.params.periodic,
89 equidist_nested=self.params.equidist_nested,
90 ).T
91 )
93 # we have an n-d problem
94 else:
95 Rspace = []
96 Pspace = []
97 for i in range(len(self.fine_prob.nvars)):
98 # if number of variables is the same on both levels, Rspace and Pspace are identity
99 if self.coarse_prob.nvars == self.fine_prob.nvars:
100 Rspace.append(sp.eye(self.coarse_prob.nvars[i]))
101 Pspace.append(sp.eye(self.fine_prob.nvars[i]))
102 # assemble restriction as transpose of interpolation
103 else:
104 if not self.params.periodic:
105 fine_grid = np.array([(j + 1) * self.fine_prob.dx for j in range(self.fine_prob.nvars[i])])
106 coarse_grid = np.array(
107 [(j + 1) * self.coarse_prob.dx for j in range(self.coarse_prob.nvars[i])]
108 )
109 else:
110 fine_grid = np.array([j * self.fine_prob.dx for j in range(self.fine_prob.nvars[i])])
111 coarse_grid = np.array([j * self.coarse_prob.dx for j in range(self.coarse_prob.nvars[i])])
113 Pspace.append(
114 th.interpolation_matrix_1d(
115 fine_grid,
116 coarse_grid,
117 k=self.params.iorder,
118 periodic=self.params.periodic,
119 equidist_nested=self.params.equidist_nested,
120 )
121 )
122 if self.params.rorder > 0:
123 restr_factor = 0.5
124 else:
125 restr_factor = 1.0
127 if self.params.iorder == self.params.rorder:
128 Rspace.append(restr_factor * Pspace[-1].T)
130 else:
131 mat = th.interpolation_matrix_1d(
132 fine_grid,
133 coarse_grid,
134 k=self.params.rorder,
135 periodic=self.params.periodic,
136 equidist_nested=self.params.equidist_nested,
137 ).T
138 Rspace.append(restr_factor * mat)
140 # kronecker 1-d operators for n-d
141 self.Pspace = Pspace[0]
142 for i in range(1, len(Pspace)):
143 self.Pspace = sp.kron(self.Pspace, Pspace[i], format='csc')
145 self.Rspace = Rspace[0]
146 for i in range(1, len(Rspace)):
147 self.Rspace = sp.kron(self.Rspace, Rspace[i], format='csc')
149 def restrict(self, F):
150 """
151 Restriction implementation
152 Args:
153 F: the fine level data (easier to access than via the fine attribute)
154 """
155 G = type(F)(self.coarse_prob.init)
157 def _restrict(fine, coarse):
158 if hasattr(self.fine_prob, 'ncomp'):
159 for i in range(self.fine_prob.ncomp):
160 if fine.shape[-1] == self.fine_prob.ncomp:
161 tmpF = fine[..., i].flatten()
162 tmpG = self.Rspace.dot(tmpF)
163 coarse[..., i] = tmpG.reshape(self.coarse_prob.nvars)
164 elif fine.shape[0] == self.fine_prob.ncomp:
165 tmpF = fine[i, ...].flatten()
166 tmpG = self.Rspace.dot(tmpF)
167 coarse[i, ...] = tmpG.reshape(self.coarse_prob.nvars)
168 else:
169 raise TransferError('Don\'t know how to restrict for this problem with multiple components')
170 else:
171 tmpF = fine.flatten()
172 tmpG = self.Rspace.dot(tmpF)
173 coarse[:] = tmpG.reshape(self.coarse_prob.nvars)
175 if hasattr(type(F), 'components'):
176 for comp in F.components:
177 _restrict(F.__getattr__(comp), G.__getattr__(comp))
178 elif type(F).__name__ == 'mesh':
179 _restrict(F, G)
180 else:
181 raise TransferError('Wrong data type for restriction, got %s' % type(F))
182 return G
184 def prolong(self, G):
185 """
186 Prolongation implementation
187 Args:
188 G: the coarse level data (easier to access than via the coarse attribute)
189 """
190 F = type(G)(self.fine_prob.init)
192 def _prolong(coarse, fine):
193 if hasattr(self.fine_prob, 'ncomp'):
194 for i in range(self.fine_prob.ncomp):
195 if coarse.shape[-1] == self.fine_prob.ncomp:
196 tmpG = coarse[..., i].flatten()
197 tmpF = self.Pspace.dot(tmpG)
198 fine[..., i] = tmpF.reshape(self.fine_prob.nvars)
199 elif coarse.shape[0] == self.fine_prob.ncomp:
200 tmpG = coarse[i, ...].flatten()
201 tmpF = self.Pspace.dot(tmpG)
202 fine[i, ...] = tmpF.reshape(self.fine_prob.nvars)
203 else:
204 raise TransferError('Don\'t know how to prolong for this problem with multiple components')
205 else:
206 tmpG = coarse.flatten()
207 tmpF = self.Pspace.dot(tmpG)
208 fine[:] = tmpF.reshape(self.fine_prob.nvars)
209 return fine
211 if hasattr(type(F), 'components'):
212 for comp in G.components:
213 _prolong(G.__getattr__(comp), F.__getattr__(comp))
214 elif type(G).__name__ == 'mesh':
215 F[:] = _prolong(G, F)
216 else:
217 raise TransferError('Wrong data type for prolongation, got %s' % type(G))
218 return F