Coverage for pySDC/projects/FastWaveSlowWave/runitererror_acoustic.py: 100%
83 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import matplotlib
3matplotlib.use('Agg')
5import numpy as np
6from matplotlib import pyplot as plt
7from pylab import rcParams
9from pySDC.projects.FastWaveSlowWave.HookClass_acoustic import dump_energy
11from pySDC.implementations.problem_classes.AcousticAdvection_1D_FD_imex import acoustic_1d_imex
12from pySDC.implementations.sweeper_classes.imex_1st_order import imex_1st_order
13from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI
15from pySDC.helpers.stats_helper import filter_stats
18def compute_and_plot_itererror():
19 """
20 Routine to compute and plot the error over the iterations for difference cs values
21 """
23 num_procs = 1
25 t0 = 0.0
26 Tend = 0.025
28 # initialize level parameters
29 level_params = dict()
30 level_params['restol'] = 1e-10
31 level_params['dt'] = Tend
33 # This comes as read-in for the step class
34 step_params = dict()
35 step_params['maxiter'] = 15
37 # This comes as read-in for the problem class
38 problem_params = dict()
39 problem_params['cadv'] = 0.1
40 problem_params['nvars'] = [(2, 300)]
41 problem_params['order_adv'] = 5
42 problem_params['waveno'] = 5
44 # This comes as read-in for the sweeper class
45 sweeper_params = dict()
46 sweeper_params['quad_type'] = 'RADAU-RIGHT'
47 sweeper_params['do_coll_update'] = True
49 # initialize controller parameters
50 controller_params = dict()
51 controller_params['logger_level'] = 30
52 controller_params['hook_class'] = dump_energy
54 # Fill description dictionary for easy hierarchy creation
55 description = dict()
56 description['problem_class'] = acoustic_1d_imex
57 description['sweeper_class'] = imex_1st_order
58 description['step_params'] = step_params
59 description['level_params'] = level_params
61 cs_v = [0.5, 1.0, 1.5, 5.0]
62 nodes_v = [3]
64 residual = np.zeros((np.size(cs_v), np.size(nodes_v), step_params['maxiter']))
65 convrate = np.zeros((np.size(cs_v), np.size(nodes_v), step_params['maxiter'] - 1))
66 lastiter = np.zeros((np.size(cs_v), np.size(nodes_v))) + step_params['maxiter']
67 avg_convrate = np.zeros((np.size(cs_v), np.size(nodes_v)))
69 P = None
70 for cs_ind in range(0, np.size(cs_v)):
71 problem_params['cs'] = cs_v[cs_ind]
72 description['problem_params'] = problem_params
74 for nodes_ind in np.arange(np.size(nodes_v)):
75 sweeper_params['num_nodes'] = nodes_v[nodes_ind]
76 description['sweeper_params'] = sweeper_params
78 # instantiate the controller
79 controller = controller_nonMPI(
80 num_procs=num_procs, controller_params=controller_params, description=description
81 )
82 # get initial values on finest level
83 P = controller.MS[0].levels[0].prob
84 uinit = P.u_exact(t0)
86 print("Fast CFL number: %4.2f" % (problem_params['cs'] * level_params['dt'] / P.dx))
87 print("Slow CFL number: %4.2f" % (problem_params['cadv'] * level_params['dt'] / P.dx))
89 # call main function to get things done...
90 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend)
92 extract_stats = filter_stats(stats, type='residual_post_iteration')
94 for k, v in extract_stats.items():
95 if k.iter != -1:
96 residual[cs_ind, nodes_ind, k.iter - 2] = v
98 # Compute convergence rates
99 for iter in range(0, step_params['maxiter'] - 1):
100 if residual[cs_ind, nodes_ind, iter] < level_params['restol']:
101 lastiter[cs_ind, nodes_ind] = iter
102 else:
103 convrate[cs_ind, nodes_ind, iter] = (
104 residual[cs_ind, nodes_ind, iter + 1] / residual[cs_ind, nodes_ind, iter]
105 )
106 print(lastiter[cs_ind, nodes_ind])
107 avg_convrate[cs_ind, nodes_ind] = np.sum(convrate[cs_ind, nodes_ind, :]) / float(
108 lastiter[cs_ind, nodes_ind]
109 )
111 # Plot the results
112 fs = 8
113 color = ['r', 'b', 'g', 'c']
114 shape = ['o', 'd', 's', 'v']
115 rcParams['figure.figsize'] = 2.5, 2.5
116 rcParams['pgf.rcfonts'] = False
117 fig = plt.figure()
118 for ii in range(0, np.size(cs_v)):
119 x = np.arange(1, lastiter[ii, 0] - 1)
120 y = convrate[ii, 0, 0 : int(lastiter[ii, 0]) - 2]
121 plt.plot(
122 x,
123 y,
124 linestyle='-',
125 marker=shape[ii],
126 markersize=fs - 2,
127 color=color[ii],
128 label=r'$C_{fast}$=%4.2f' % (cs_v[ii] * level_params['dt'] / P.dx),
129 )
131 plt.legend(loc='upper right', fontsize=fs, prop={'size': fs - 2})
132 plt.xlabel('Iteration', fontsize=fs)
133 plt.ylabel(r'$|| r^{k+1} ||_{\infty}/|| r^k ||_{\infty}$', fontsize=fs, labelpad=2)
134 plt.xlim([0, step_params['maxiter']])
135 plt.ylim([0, 1.0])
136 plt.yticks(fontsize=fs)
137 plt.xticks(fontsize=fs)
138 filename = 'data/iteration.png'
139 fig.savefig(filename, bbox_inches='tight')
142if __name__ == "__main__":
143 compute_and_plot_itererror()