Coverage for pySDC/projects/Resilience/vdp.py: 82%

195 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-19 09:13 +0000

1# script to run a van der Pol problem 

2import numpy as np 

3import matplotlib.pyplot as plt 

4 

5from pySDC.helpers.stats_helper import get_sorted, get_list_of_types 

6from pySDC.implementations.problem_classes.Van_der_Pol_implicit import vanderpol 

7from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI 

8from pySDC.implementations.convergence_controller_classes.adaptivity import Adaptivity 

9from pySDC.core.errors import ProblemError, ConvergenceError 

10from pySDC.projects.Resilience.hook import LogData, hook_collection 

11from pySDC.projects.Resilience.strategies import merge_descriptions 

12from pySDC.projects.Resilience.sweepers import generic_implicit_efficient 

13 

14 

15def plot_step_sizes(stats, ax, e_em_key='error_embedded_estimate'): 

16 """ 

17 Plot solution and step sizes to visualize the dynamics in the van der Pol equation. 

18 

19 Args: 

20 stats (pySDC.stats): The stats object of the run 

21 ax: Somewhere to plot 

22 

23 Returns: 

24 None 

25 """ 

26 

27 # convert filtered statistics to list of iterations count, sorted by process 

28 u = np.array([me[1][0] for me in get_sorted(stats, type='u', recomputed=False, sortby='time')]) 

29 p = np.array([me[1][1] for me in get_sorted(stats, type='u', recomputed=False, sortby='time')]) 

30 t = np.array([me[0] for me in get_sorted(stats, type='u', recomputed=False, sortby='time')]) 

31 

32 e_em = np.array(get_sorted(stats, type=e_em_key, recomputed=False, sortby='time'))[:, 1] 

33 dt = np.array(get_sorted(stats, type='dt', recomputed=False, sortby='time')) 

34 restart = np.array(get_sorted(stats, type='restart', recomputed=None, sortby='time')) 

35 

36 ax.plot(t, u, label=r'$u$') 

37 ax.plot(t, p, label=r'$p$') 

38 

39 dt_ax = ax.twinx() 

40 dt_ax.plot(dt[:, 0], dt[:, 1], color='black') 

41 dt_ax.plot(t, e_em, color='magenta') 

42 dt_ax.set_yscale('log') 

43 dt_ax.set_ylim((5e-10, 3e-1)) 

44 

45 ax.plot([None], [None], label=r'$\Delta t$', color='black') 

46 ax.plot([None], [None], label=r'$\epsilon_\mathrm{embedded}$', color='magenta') 

47 ax.plot([None], [None], label='restart', color='grey', ls='-.') 

48 

49 for i in range(len(restart)): 

50 if restart[i, 1] > 0: 

51 ax.axvline(restart[i, 0], color='grey', ls='-.') 

52 ax.legend(frameon=False) 

53 

54 ax.set_xlabel('time') 

55 

56 

57def plot_avoid_restarts(stats, ax, avoid_restarts): 

58 """ 

59 Make a plot that shows how many iterations where required to solve to a point in time in the simulation. 

60 Also restarts are shown as vertical lines. 

61 

62 Args: 

63 stats (pySDC.stats): The stats object of the run 

64 ax: Somewhere to plot 

65 avoid_restarts (bool): Whether the `avoid_restarts` option was set in order to choose a color 

66 

67 Returns: 

68 None 

69 """ 

70 sweeps = get_sorted(stats, type='sweeps', recomputed=None) 

71 restarts = get_sorted(stats, type='restart', recomputed=None) 

72 

73 color = 'blue' if avoid_restarts else 'red' 

74 ls = ':' if not avoid_restarts else '-.' 

75 label = 'with' if avoid_restarts else 'without' 

76 

77 ax.plot([me[0] for me in sweeps], np.cumsum([me[1] for me in sweeps]), color=color, label=f'{label} avoid_restarts') 

78 [ax.axvline(me[0], color=color, ls=ls) for me in restarts if me[1]] 

79 

80 ax.set_xlabel(r'$t$') 

81 ax.set_ylabel(r'$k$') 

82 ax.legend(frameon=False) 

83 

84 

85def run_vdp( 

86 custom_description=None, 

87 num_procs=1, 

88 Tend=10.0, 

89 hook_class=LogData, 

90 fault_stuff=None, 

91 custom_controller_params=None, 

92 use_MPI=False, 

93 **kwargs, 

94): 

95 """ 

96 Run a van der Pol problem with default parameters. 

97 

98 Args: 

99 custom_description (dict): Overwrite presets 

100 num_procs (int): Number of steps for MSSDC 

101 Tend (float): Time to integrate to 

102 hook_class (pySDC.Hook): A hook to store data 

103 fault_stuff (dict): A dictionary with information on how to add faults 

104 custom_controller_params (dict): Overwrite presets 

105 use_MPI (bool): Whether or not to use MPI 

106 

107 Returns: 

108 dict: The stats object 

109 controller: The controller 

110 bool: If the code crashed 

111 """ 

112 

113 # initialize level parameters 

114 level_params = {} 

115 level_params['dt'] = 1e-2 

116 

117 # initialize sweeper parameters 

118 sweeper_params = {} 

119 sweeper_params['quad_type'] = 'RADAU-RIGHT' 

120 sweeper_params['num_nodes'] = 3 

121 sweeper_params['QI'] = 'LU' 

122 

123 problem_params = { 

124 'mu': 5.0, 

125 'newton_tol': 1e-9, 

126 'newton_maxiter': 99, 

127 'u0': np.array([2.0, 0.0]), 

128 'relative_tolerance': True, 

129 } 

130 

131 # initialize step parameters 

132 step_params = {} 

133 step_params['maxiter'] = 4 

134 

135 # initialize controller parameters 

136 controller_params = {} 

137 controller_params['logger_level'] = 30 

138 controller_params['hook_class'] = hook_collection + (hook_class if type(hook_class) == list else [hook_class]) 

139 controller_params['mssdc_jac'] = False 

140 

141 if custom_controller_params is not None: 

142 controller_params = {**controller_params, **custom_controller_params} 

143 

144 # fill description dictionary for easy step instantiation 

145 description = {} 

146 description['problem_class'] = vanderpol 

147 description['problem_params'] = problem_params 

148 description['sweeper_class'] = generic_implicit_efficient 

149 description['sweeper_params'] = sweeper_params 

150 description['level_params'] = level_params 

151 description['step_params'] = step_params 

152 

153 if custom_description is not None: 

154 description = merge_descriptions(description, custom_description) 

155 

156 # set time parameters 

157 t0 = 0.0 

158 

159 # instantiate controller 

160 if use_MPI: 

161 from mpi4py import MPI 

162 from pySDC.implementations.controller_classes.controller_MPI import controller_MPI 

163 

164 comm = kwargs.get('comm', MPI.COMM_WORLD) 

165 controller = controller_MPI(controller_params=controller_params, description=description, comm=comm) 

166 

167 # get initial values on finest level 

168 P = controller.S.levels[0].prob 

169 uinit = P.u_exact(t0) 

170 else: 

171 controller = controller_nonMPI( 

172 num_procs=num_procs, controller_params=controller_params, description=description 

173 ) 

174 

175 # get initial values on finest level 

176 P = controller.MS[0].levels[0].prob 

177 uinit = P.u_exact(t0) 

178 

179 # insert faults 

180 if fault_stuff is not None: 

181 from pySDC.projects.Resilience.fault_injection import prepare_controller_for_faults 

182 

183 prepare_controller_for_faults(controller, fault_stuff, {}, {}) 

184 

185 # call main function to get things done... 

186 crash = False 

187 try: 

188 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend) 

189 except (ProblemError, ConvergenceError, ZeroDivisionError) as e: 

190 crash = True 

191 print(f'Warning: Premature termination: {e}') 

192 stats = controller.return_stats() 

193 

194 return stats, controller, crash 

195 

196 

197def fetch_test_data(stats, comm=None, use_MPI=False): 

198 """ 

199 Get data to perform tests on from stats 

200 

201 Args: 

202 stats (pySDC.stats): The stats object of the run 

203 comm (mpi4py.MPI.Comm): MPI communicator, or `None` for the non-MPI version 

204 use_MPI (bool): Whether or not MPI was used when generating stats 

205 

206 Returns: 

207 dict: Key values to perform tests on 

208 """ 

209 types = ['error_embedded_estimate', 'restart', 'dt', 'sweeps', 'residual_post_step'] 

210 data = {} 

211 for type in types: 

212 if type not in get_list_of_types(stats): 

213 raise ValueError(f"Can't read type \"{type}\" from stats, only got", get_list_of_types(stats)) 

214 

215 data[type] = [ 

216 me[1] for me in get_sorted(stats, type=type, recomputed=None, sortby='time', comm=comm if use_MPI else None) 

217 ] 

218 

219 # add time 

220 data['time'] = [ 

221 me[0] for me in get_sorted(stats, type='u', recomputed=None, sortby='time', comm=comm if use_MPI else None) 

222 ] 

223 return data 

224 

225 

226def check_if_tests_match(data_nonMPI, data_MPI): 

227 """ 

228 Check if the data matches between MPI and nonMPI versions 

229 

230 Args: 

231 data_nonMPI (dict): Key values to perform tests on obtained without MPI 

232 data_MPI (dict): Key values to perform tests on obtained with MPI 

233 

234 Returns: 

235 None 

236 """ 

237 ops = [np.mean, np.min, np.max, len, sum] 

238 for type in data_nonMPI.keys(): 

239 for op in ops: 

240 val_nonMPI = op(data_nonMPI[type]) 

241 val_MPI = op(data_MPI[type]) 

242 assert np.isclose(val_nonMPI, val_MPI), ( 

243 f"Mismatch in operation {op.__name__} on type \"{type}\": with {data_MPI['size'][0]} ranks: " 

244 f"nonMPI: {val_nonMPI}, MPI: {val_MPI}" 

245 ) 

246 print(f'Passed with {data_MPI["size"][0]} ranks') 

247 

248 

249def mpi_vs_nonMPI(MPI_ready, comm): 

250 """ 

251 Check if MPI and non-MPI versions give the same output. 

252 

253 Args: 

254 MPI_ready (bool): Whether or not we can use MPI at all 

255 comm (mpi4py.MPI.Comm): MPI communicator 

256 

257 Returns: 

258 None 

259 """ 

260 if MPI_ready: 

261 size = comm.size 

262 rank = comm.rank 

263 use_MPI = [True, False] 

264 else: 

265 size = 1 

266 rank = 0 

267 use_MPI = [False, False] 

268 

269 if rank == 0: 

270 print(f"Running with {size} ranks") 

271 

272 custom_description = {'convergence_controllers': {}} 

273 custom_description['convergence_controllers'][Adaptivity] = {'e_tol': 1e-7, 'avoid_restarts': False} 

274 

275 data = [{}, {}] 

276 

277 for i in range(2): 

278 if use_MPI[i] or rank == 0: 

279 stats, controller, Tend = run_vdp( 

280 custom_description=custom_description, 

281 num_procs=size, 

282 use_MPI=use_MPI[i], 

283 Tend=1.0, 

284 comm=comm, 

285 ) 

286 data[i] = fetch_test_data(stats, comm, use_MPI=use_MPI[i]) 

287 data[i]['size'] = [size] 

288 

289 if rank == 0: 

290 check_if_tests_match(data[1], data[0]) 

291 

292 

293def check_adaptivity_with_avoid_restarts(comm=None, size=1): 

294 """ 

295 Make a test if adaptivity with the option to avoid restarts based on a contraction factor estimate works as 

296 expected. 

297 To this end, we run the same test of the van der Pol equation twice with the only difference being this option 

298 turned off or on. 

299 We recorded how many iterations we expect to avoid by avoiding restarts and check against this value. 

300 Also makes a figure comparing the number of iterations over time. 

301 

302 In principle there is an option to test MSSDC here, but this is only preliminary and needs to be checked further. 

303 

304 Args: 

305 comm (mpi4py.MPI.Comm): MPI communicator, or `None` for the non-MPI version 

306 size (int): Number of steps for MSSDC, is overridden by communicator size if applicable 

307 

308 Returns: 

309 None 

310 """ 

311 fig, ax = plt.subplots() 

312 custom_description = {'convergence_controllers': {}, 'level_params': {'dt': 1.0e-2}} 

313 custom_controller_params = {'all_to_done': False} 

314 results = {'e': {}, 'sweeps': {}, 'restarts': {}} 

315 size = comm.size if comm is not None else size 

316 

317 for avoid_restarts in [True, False]: 

318 custom_description['convergence_controllers'][Adaptivity] = {'e_tol': 1e-7, 'avoid_restarts': avoid_restarts} 

319 stats, controller, Tend = run_vdp( 

320 custom_description=custom_description, 

321 num_procs=size, 

322 use_MPI=comm is not None, 

323 custom_controller_params=custom_controller_params, 

324 Tend=10.0e0, 

325 comm=comm, 

326 ) 

327 plot_avoid_restarts(stats, ax, avoid_restarts) 

328 

329 # check error 

330 u = get_sorted(stats, type='u', recomputed=False)[-1] 

331 if comm is None: 

332 u_exact = controller.MS[0].levels[0].prob.u_exact(t=u[0]) 

333 else: 

334 u_exact = controller.S.levels[0].prob.u_exact(t=u[0]) 

335 results['e'][avoid_restarts] = abs(u[1] - u_exact) 

336 

337 # check iteration counts 

338 results['sweeps'][avoid_restarts] = sum( 

339 [me[1] for me in get_sorted(stats, type='sweeps', recomputed=None, comm=comm)] 

340 ) 

341 results['restarts'][avoid_restarts] = sum([me[1] for me in get_sorted(stats, type='restart', comm=comm)]) 

342 

343 fig.tight_layout() 

344 fig.savefig(f'data/vdp-{size}procs{"-use_MPI" if comm is not None else ""}-avoid_restarts.png') 

345 

346 assert np.isclose(results['e'][True], results['e'][False], rtol=5.0), ( 

347 'Errors don\'t match with avoid_restarts and without, got ' 

348 f'{results["e"][True]:.2e} and {results["e"][False]:.2e}' 

349 ) 

350 if size == 1: 

351 assert results['sweeps'][True] - results['sweeps'][False] == 1301 - 1344, ( 

352 '{Expected to save 43 iterations ' 

353 f"with avoid_restarts, got {results['sweeps'][False] - results['sweeps'][True]}" 

354 ) 

355 assert results['restarts'][True] - results['restarts'][False] == 0 - 10, ( 

356 '{Expected to save 10 restarts ' 

357 f"with avoid_restarts, got {results['restarts'][False] - results['restarts'][True]}" 

358 ) 

359 print('Passed avoid_restarts tests with 1 process') 

360 if size == 4: 

361 assert results['sweeps'][True] - results['sweeps'][False] == 2916 - 3008, ( 

362 '{Expected to save 92 iterations ' 

363 f"with avoid_restarts, got {results['sweeps'][False] - results['sweeps'][True]}" 

364 ) 

365 assert results['restarts'][True] - results['restarts'][False] == 0 - 18, ( 

366 '{Expected to save 18 restarts ' 

367 f"with avoid_restarts, got {results['restarts'][False] - results['restarts'][True]}" 

368 ) 

369 print('Passed avoid_restarts tests with 4 processes') 

370 

371 

372def check_step_size_limiter(size=4, comm=None): 

373 """ 

374 Check the step size limiter convergence controller. 

375 First we run without step size limits and then enforce limits that are slightly above and below what the usual 

376 limits. Then we run again and see if we exceed the limits. 

377 

378 Args: 

379 size (int): Number of steps for MSSDC 

380 comm (mpi4py.MPI.Comm): MPI communicator, or `None` for the non-MPI version 

381 

382 Returns: 

383 None 

384 """ 

385 from pySDC.implementations.convergence_controller_classes.step_size_limiter import StepSizeLimiter 

386 

387 custom_description = {'convergence_controllers': {}, 'level_params': {'dt': 1.0e-2}} 

388 expect = {} 

389 params = {'e_tol': 1e-6} 

390 

391 for limit_step_sizes in [False, True]: 

392 if limit_step_sizes: 

393 params['dt_max'] = expect['dt_max'] * 0.9 

394 params['dt_min'] = np.inf 

395 params['dt_slope_max'] = expect['dt_slope_max'] * 0.9 

396 params['dt_slope_min'] = expect['dt_slope_min'] * 1.1 

397 custom_description['convergence_controllers'][StepSizeLimiter] = {'dt_min': expect['dt_min'] * 1.1} 

398 else: 

399 for k in ['dt_max', 'dt_min', 'dt_slope_max', 'dt_slope_min']: 

400 params.pop(k, None) 

401 custom_description['convergence_controllers'].pop(StepSizeLimiter, None) 

402 

403 custom_description['convergence_controllers'][Adaptivity] = params 

404 stats, controller, Tend = run_vdp( 

405 custom_description=custom_description, 

406 num_procs=size, 

407 use_MPI=comm is not None, 

408 Tend=5.0e0, 

409 comm=comm, 

410 ) 

411 

412 # plot the step sizes 

413 dt = get_sorted(stats, type='dt', recomputed=None, comm=comm) 

414 

415 # make sure that the convergence controllers are only added once 

416 convergence_controller_classes = [type(me) for me in controller.convergence_controllers] 

417 for c in convergence_controller_classes: 

418 assert convergence_controller_classes.count(c) == 1, f'Convergence controller {c} added multiple times' 

419 

420 dt_numpy = np.array([me[1] for me in dt]) 

421 if not limit_step_sizes: 

422 expect['dt_max'] = max(dt_numpy) 

423 expect['dt_min'] = min(dt_numpy) 

424 expect['dt_slope_max'] = max(dt_numpy[:-2] / dt_numpy[1:-1]) 

425 expect['dt_slope_min'] = min(dt_numpy[:-2] / dt_numpy[1:-1]) 

426 else: 

427 dt_max = max(dt_numpy) 

428 dt_min = min(dt_numpy[size:-size]) # The first and last step might fall below the limits 

429 dt_slope_max = max(dt_numpy[:-2] / dt_numpy[1:-1]) 

430 dt_slope_min = min(dt_numpy[:-2] / dt_numpy[1:-1]) 

431 assert ( 

432 dt_max <= expect['dt_max'] 

433 ), f"Exceeded maximum allowed step size! Got {dt_max:.4e}, allowed {params['dt_max']:.4e}." 

434 assert ( 

435 dt_min >= expect['dt_min'] 

436 ), f"Exceeded minimum allowed step size! Got {dt_min:.4e}, allowed {params['dt_min']:.4e}." 

437 assert ( 

438 dt_slope_max <= expect['dt_slope_max'] 

439 ), f"Exceeded maximum allowed step size slope! Got {dt_slope_max:.4e}, allowed {params['dt_slope_max']:.4e}." 

440 assert ( 

441 dt_slope_min >= expect['dt_slope_min'] 

442 ), f"Exceeded minimum allowed step size slope! Got {dt_slope_min:.4e}, allowed {params['dt_slope_min']:.4e}." 

443 

444 assert ( 

445 dt_slope_max <= expect['dt_slope_max'] 

446 ), f"Exceeded maximum allowed step size slope! Got {dt_slope_max:.4e}, allowed {params['dt_slope_max']:.4e}." 

447 assert ( 

448 dt_slope_min >= expect['dt_slope_min'] 

449 ), f"Exceeded minimum allowed step size slope! Got {dt_slope_min:.4e}, allowed {params['dt_slope_min']:.4e}." 

450 

451 if comm is None: 

452 print(f'Passed step size limiter test with {size} ranks in nonMPI implementation') 

453 else: 

454 if comm.rank == 0: 

455 print(f'Passed step size limiter test with {size} ranks in MPI implementation') 

456 

457 

458def interpolation_stuff(): # pragma: no cover 

459 """ 

460 Plot interpolation vdp with interpolation after a restart and compare it to other modes of adaptivity. 

461 """ 

462 from pySDC.implementations.convergence_controller_classes.interpolate_between_restarts import ( 

463 InterpolateBetweenRestarts, 

464 ) 

465 from pySDC.implementations.hooks.log_errors import LogLocalErrorPostStep 

466 from pySDC.implementations.hooks.log_work import LogWork 

467 from pySDC.helpers.plot_helper import figsize_by_journal 

468 

469 fig, axs = plt.subplots(4, 1, figsize=figsize_by_journal('Springer_Numerical_Algorithms', 1.0, 1.0), sharex=True) 

470 restart_ax = axs[2].twinx() 

471 

472 colors = ['black', 'red', 'blue'] 

473 labels = ['interpolate', 'regular', 'keep iterating'] 

474 

475 for i in range(3): 

476 convergence_controllers = { 

477 Adaptivity: {'e_tol': 1e-7, 'dt_max': 9.0e-1}, 

478 } 

479 if i == 0: 

480 convergence_controllers[InterpolateBetweenRestarts] = {} 

481 if i == 2: 

482 convergence_controllers[Adaptivity]['avoid_restarts'] = True 

483 

484 problem_params = { 

485 'mu': 5, 

486 } 

487 

488 sweeper_params = { 

489 'QI': 'LU', 

490 } 

491 

492 custom_description = { 

493 'convergence_controllers': convergence_controllers, 

494 'problem_params': problem_params, 

495 'sweeper_params': sweeper_params, 

496 } 

497 

498 stats, controller, _ = run_vdp( 

499 custom_description=custom_description, 

500 hook_class=[LogLocalErrorPostStep, LogData, LogWork] + hook_collection, 

501 ) 

502 

503 k = get_sorted(stats, type='work_newton') 

504 restarts = get_sorted(stats, type='restart') 

505 u = get_sorted(stats, type='u', recomputed=False) 

506 e_loc = get_sorted(stats, type='e_local_post_step', recomputed=False) 

507 dt = get_sorted(stats, type='dt', recomputed=False) 

508 

509 axs[0].plot([me[0] for me in u], [me[1][1] for me in u], color=colors[i], label=labels[i]) 

510 axs[1].plot([me[0] for me in e_loc], [me[1] for me in e_loc], color=colors[i]) 

511 axs[2].plot([me[0] for me in k], np.cumsum([me[1] for me in k]), color=colors[i]) 

512 restart_ax.plot([me[0] for me in restarts], np.cumsum([me[1] for me in restarts]), color=colors[i], ls='--') 

513 axs[3].plot([me[0] for me in dt], [me[1] for me in dt], color=colors[i]) 

514 

515 for ax in [axs[1], axs[3]]: 

516 ax.set_yscale('log') 

517 axs[0].set_ylabel(r'$u$') 

518 axs[1].set_ylabel(r'$e_\mathrm{local}$') 

519 axs[2].set_ylabel(r'Newton iterations') 

520 restart_ax.set_ylabel(r'restarts (dashed)') 

521 axs[3].set_ylabel(r'$\Delta t$') 

522 axs[3].set_xlabel(r'$t$') 

523 axs[0].legend(frameon=False) 

524 fig.tight_layout() 

525 plt.show() 

526 

527 

528if __name__ == "__main__": 

529 import sys 

530 

531 try: 

532 from mpi4py import MPI 

533 

534 MPI_ready = True 

535 comm = MPI.COMM_WORLD 

536 size = comm.size 

537 except ModuleNotFoundError: 

538 MPI_ready = False 

539 comm = None 

540 size = 1 

541 

542 if len(sys.argv) == 1: 

543 mpi_vs_nonMPI(MPI_ready, comm) 

544 check_step_size_limiter(size, comm) 

545 

546 if size == 1: 

547 check_adaptivity_with_avoid_restarts(comm=None, size=1) 

548 

549 elif 'mpi_vs_nonMPI' in sys.argv: 

550 mpi_vs_nonMPI(MPI_ready, comm) 

551 elif 'check_step_size_limiter' in sys.argv: 

552 check_step_size_limiter(MPI_ready, comm) 

553 elif 'check_adaptivity_with_avoid_restarts' and size == 1: 

554 check_adaptivity_with_avoid_restarts(comm=None, size=1) 

555 else: 

556 raise NotImplementedError('Your test is not implemented!')