Coverage for pySDC/projects/Resilience/dahlquist.py: 0%

147 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-20 16:55 +0000

1# script to run a simple advection problem 

2from pySDC.implementations.problem_classes.TestEquation_0D import testequation0d 

3from pySDC.implementations.sweeper_classes.generic_implicit import generic_implicit 

4from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI 

5from pySDC.core.hooks import Hooks 

6from pySDC.helpers.stats_helper import get_sorted 

7import numpy as np 

8import matplotlib.pyplot as plt 

9from matplotlib.colors import Normalize 

10from mpl_toolkits.axes_grid1 import make_axes_locatable 

11 

12from pySDC.implementations.hooks.log_solution import LogSolutionAfterIteration 

13from pySDC.implementations.hooks.log_step_size import LogStepSize 

14from pySDC.projects.Resilience.strategies import merge_descriptions 

15 

16 

17class LogLambdas(Hooks): 

18 """ 

19 Store the lambda values at the beginning of the run 

20 """ 

21 

22 def pre_run(self, step, level_number): 

23 super().pre_run(step, level_number) 

24 L = step.levels[level_number] 

25 self.add_to_stats(process=0, time=0, level=0, iter=0, sweep=0, type='lambdas', value=L.prob.lambdas) 

26 

27 

28Hooks = [LogLambdas, LogSolutionAfterIteration, LogStepSize] 

29 

30 

31def run_dahlquist( 

32 custom_description=None, 

33 num_procs=1, 

34 Tend=1.0, 

35 hook_class=Hooks, 

36 fault_stuff=None, 

37 custom_controller_params=None, 

38 **kwargs, 

39): 

40 """ 

41 Run a Dahlquist problem with default parameters. 

42 

43 Args: 

44 custom_description (dict): Overwrite presets 

45 num_procs (int): Number of steps for MSSDC 

46 Tend (float): Time to integrate to 

47 hook_class (pySDC.Hook): A hook to store data 

48 fault_stuff (dict): A dictionary with information on how to add faults 

49 custom_controller_params (dict): Overwrite presets 

50 

51 Returns: 

52 dict: The stats object 

53 controller: The controller 

54 Tend: The time that was supposed to be integrated to 

55 """ 

56 

57 # initialize level parameters 

58 level_params = dict() 

59 level_params['dt'] = 1.0 

60 

61 # initialize sweeper parameters 

62 sweeper_params = dict() 

63 sweeper_params['quad_type'] = 'RADAU-RIGHT' 

64 sweeper_params['num_nodes'] = 3 

65 sweeper_params['QI'] = 'IE' 

66 sweeper_params['initial_guess'] = 'random' 

67 

68 # build lambdas 

69 re = np.linspace(-30, 30, 400) 

70 im = np.linspace(-50, 50, 400) 

71 lambdas = np.array([[complex(re[i], im[j]) for i in range(len(re))] for j in range(len(im))]).reshape( 

72 (len(re) * len(im)) 

73 ) 

74 

75 problem_params = { 

76 'lambdas': lambdas, 

77 'u0': 1.0 + 0.0j, 

78 } 

79 

80 # initialize step parameters 

81 step_params = dict() 

82 step_params['maxiter'] = 5 

83 

84 # initialize controller parameters 

85 controller_params = dict() 

86 controller_params['logger_level'] = 30 

87 controller_params['hook_class'] = hook_class 

88 controller_params['mssdc_jac'] = False 

89 

90 if custom_controller_params is not None: 

91 controller_params = {**controller_params, **custom_controller_params} 

92 

93 # fill description dictionary for easy step instantiation 

94 description = dict() 

95 description['problem_class'] = testequation0d # pass problem class 

96 description['problem_params'] = problem_params # pass problem parameters 

97 description['sweeper_class'] = generic_implicit # pass sweeper 

98 description['sweeper_params'] = sweeper_params # pass sweeper parameters 

99 description['level_params'] = level_params # pass level parameters 

100 description['step_params'] = step_params 

101 

102 if custom_description is not None: 

103 description = merge_descriptions(description, custom_description) 

104 

105 # set time parameters 

106 t0 = 0.0 

107 

108 # instantiate controller 

109 controller = controller_nonMPI(num_procs=num_procs, controller_params=controller_params, description=description) 

110 

111 # insert faults 

112 if fault_stuff is not None: 

113 raise NotImplementedError('No fault stuff here...') 

114 

115 # get initial values on finest level 

116 P = controller.MS[0].levels[0].prob 

117 uinit = P.u_exact(t0) 

118 

119 # call main function to get things done... 

120 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend) 

121 return stats, controller, Tend 

122 

123 

124def plot_stability(stats, ax=None, iter=None, colors=None, crosshair=True, fill=False, **kwargs): 

125 """ 

126 Plot the domain of stability by checking if the solution grows. 

127 

128 Args: 

129 stats (pySDC.stats): The stats object of the run 

130 ax: Somewhere to plot 

131 iter (list): Check the stability for different numbers of iterations 

132 colors (list): Colors for the different iterations 

133 crosshair (bool): Whether to highlight the axes 

134 fill (bool): Fill the contours or not 

135 

136 Returns: 

137 bool: If the method is A-stable or not 

138 """ 

139 lambdas = get_sorted(stats, type='lambdas')[0][1] 

140 u = get_sorted(stats, type='u', sortby='iter') 

141 

142 if ax is None: 

143 fig, ax = plt.subplots(1, 1) 

144 

145 # decorate 

146 if crosshair: 

147 ax.axhline(0, color='black', alpha=1.0) 

148 ax.axvline(0, color='black', alpha=1.0) 

149 

150 iter = [1] if iter is None else iter 

151 colors = ['blue', 'red', 'violet', 'green'] if colors is None else colors 

152 

153 for i in iter: 

154 # isolate the solutions from the iteration you want 

155 U = np.reshape([me[1] for me in u if me[0] == i], (len(np.unique(lambdas.real)), len(np.unique(lambdas.imag)))) 

156 

157 # get a grid for plotting 

158 X, Y = np.meshgrid(np.unique(lambdas.real), np.unique(lambdas.imag)) 

159 if fill: 

160 ax.contourf(X, Y, abs(U), levels=[-np.inf, 1 - np.finfo(float).eps], colors=colors[i - 1], alpha=0.5) 

161 ax.contour(X, Y, abs(U), levels=[1], colors=colors[i - 1]) 

162 ax.plot([None], [None], color=colors[i - 1], label=f'k={i}') 

163 

164 # check if the method is A-stable 

165 unstable = abs(U) > 1.0 

166 Astable = not any(X[unstable] < 0) 

167 

168 ax.legend(frameon=False) 

169 

170 return Astable 

171 

172 

173def plot_contraction(stats, fig=None, ax=None, iter=None, plot_increase=False, cbar=True, **kwargs): 

174 """ 

175 Plot the contraction of the error. 

176 

177 Args: 

178 stats (pySDC.stats): The stats object of the run 

179 fig: Figure of the plot, needed for a colorbar 

180 ax: Somewhere to plot 

181 iter (list): Plot the contraction for different numbers of iterations 

182 plot_increase (bool): Whether to also include increasing errors. 

183 cbar (bool): Plot a color bar or not 

184 

185 Returns: 

186 The plot 

187 """ 

188 lambdas = get_sorted(stats, type='lambdas')[0][1] 

189 real = np.unique(lambdas.real) 

190 imag = np.unique(lambdas.imag) 

191 

192 u = get_sorted(stats, type='u', sortby='iter') 

193 t = get_sorted(stats, type='u', sortby='time')[0][0] 

194 u_exact = np.exp(lambdas * t) 

195 

196 kwargs['cmap'] = kwargs.get('cmap', 'seismic' if plot_increase else 'jet') 

197 

198 # decide which iterations to look at 

199 iter = [0, 1] if iter is None else iter 

200 assert len(iter) > 1, 'Need to compute the contraction factor across multiple iterations!' 

201 

202 # get solution for the specified iterations 

203 us = [me[1] for me in u if me[0] in iter] 

204 if 0 in iter: # ic's are not stored in stats, so we have to add them manually 

205 us = np.append([np.ones_like(lambdas)], us, axis=0) 

206 

207 # get error for each iteration 

208 e = abs(us - u_exact) 

209 e[e == 0] = np.finfo(float).eps 

210 

211 # get contraction rates for each iteration 

212 rho = e[1:, :] / e[:-1, :] 

213 rho_avg = np.mean(rho, axis=0) 

214 rho_log = np.log(np.reshape(rho_avg, (len(imag), len(real)))) 

215 

216 # get spaceally averaged contraction factor 

217 # rho_avg_space = np.mean(rho, axis=1) 

218 # e_tot = np.sum(e, axis=1) 

219 # rho_tot = e_tot[1:] / e_tot[:-1] 

220 

221 if ax is None: 

222 fig, ax = plt.subplots(1, 1) 

223 

224 # get a grid for plotting 

225 X, Y = np.meshgrid(real, imag) 

226 if plot_increase: 

227 ax.contour(X, Y, rho_log, levels=[0.0]) 

228 lim = max(np.abs([rho_log.min(), rho_log.max()])) 

229 kwargs['vmin'] = kwargs.get('vmin', -lim) 

230 kwargs['vmax'] = kwargs.get('vmax', lim) 

231 cs = ax.contourf(X, Y, rho_log, **kwargs) 

232 else: 

233 cs = ax.contourf(X, Y, np.where(rho_log <= 0, rho_log, None), levels=500, **kwargs) 

234 

235 # decorate 

236 ax.axhline(0, color='black') 

237 ax.axvline(0, color='black') 

238 

239 # fix pdf plotting 

240 ax.set_rasterized(True) 

241 

242 if cbar: 

243 divider = make_axes_locatable(ax) 

244 cbar_ax = divider.append_axes('right', 0.2, pad=0.1) 

245 cb = fig.colorbar(cs, cbar_ax) 

246 cb.set_label(r'$\rho$') 

247 cbar_ax.set_rasterized(True) 

248 return cs 

249 

250 

251def plot_increment(stats, fig=None, ax=None, iter=None, cbar=True, **kwargs): 

252 """ 

253 Plot the increment between iterations. 

254 

255 Args: 

256 stats (pySDC.stats): The stats object of the run 

257 fig: Figure of the plot, needed for a colorbar 

258 ax: Somewhere to plot 

259 iter (list): Plot the contraction for different numbers of iterations 

260 cbar (bool): Plot a color bar or not 

261 

262 Returns: 

263 None 

264 """ 

265 lambdas = get_sorted(stats, type='lambdas')[0][1] 

266 u = get_sorted(stats, type='u', sortby='iter') 

267 

268 kwargs['cmap'] = kwargs.get('cmap', 'jet') 

269 

270 # decide which iterations to look at 

271 iter = [0, 1] if iter is None else iter 

272 assert len(iter) > 1, 'Need to compute the increment across multiple iterations!' 

273 

274 # get solution for the specified iterations 

275 u_iter = [me[1] for me in u if me[0] in iter] 

276 if 0 in iter: # ics are not stored in stats, so we have to add them manually 

277 u_iter = np.append(np.ones_like(lambdas), u_iter) 

278 us = np.reshape(u_iter, (len(iter), len(lambdas))) 

279 

280 # get contraction rates for each iteration 

281 rho = abs(us[1:, :] / us[:-1, :]) 

282 rho_avg = np.mean(rho, axis=0) 

283 rho_log = np.log(np.reshape(rho_avg, (len(np.unique(lambdas.real)), len(np.unique(lambdas.imag))))) 

284 

285 if ax is None: 

286 fig, ax = plt.subplots(1, 1) 

287 

288 # get a grid for plotting 

289 X, Y = np.meshgrid(np.unique(lambdas.real), np.unique(lambdas.imag)) 

290 cs = ax.contourf(X, Y, rho_log, levels=500, **kwargs) 

291 

292 # outline the region where the increment is 0 

293 ax.contour(X, Y, rho_log, levels=[-15], colors=['red']) 

294 

295 # decorate 

296 ax.axhline(0, color='black') 

297 ax.axvline(0, color='black') 

298 

299 # fix pdf plotting 

300 ax.set_rasterized(True) 

301 

302 if cbar: 

303 divider = make_axes_locatable(ax) 

304 cbar_ax = divider.append_axes('right', 0.2, pad=0.1) 

305 cb = fig.colorbar(cs, cbar_ax) 

306 cb.set_label('increment') 

307 cbar_ax.set_rasterized(True) 

308 

309 

310def compare_contraction(): 

311 """ 

312 Make a plot comparing contraction factors between trapezoidal rule and implicit Euler. 

313 """ 

314 fig, axs = plt.subplots(1, 2, figsize=(12, 5.5), gridspec_kw={'width_ratios': [0.8, 1]}) 

315 precons = ['TRAP', 'IE'] 

316 norm = Normalize(vmin=-7, vmax=0) 

317 cbar = True 

318 for i in range(len(precons)): 

319 custom_description = {'sweeper_params': {'QI': precons[i]}} 

320 stats, controller, Tend = run_dahlquist(custom_description=custom_description, res=(400, 400)) 

321 plot_contraction(stats, fig=fig, ax=axs[i], cbar=cbar, norm=norm, cmap='jet') 

322 cbar = False 

323 axs[i].set_title(precons[i]) 

324 fig.tight_layout() 

325 

326 

327if __name__ == '__main__': 

328 custom_description = None 

329 stats, controller, Tend = run_dahlquist(custom_description=custom_description) 

330 plot_stability(stats, iter=[1, 2, 3]) 

331 plot_contraction(stats, iter=[0, 4]) 

332 plt.show()