Coverage for pySDC/projects/DAE/run/run_iteration_test.py: 100%
64 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
1import numpy as np
2import statistics
3import pickle
5from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI
6from pySDC.projects.DAE.problems.simpleDAE import SimpleDAE
7from pySDC.projects.DAE.sweepers.fullyImplicitDAE import FullyImplicitDAE
8from pySDC.projects.DAE.misc.hooksDAE import LogGlobalErrorPostStepDifferentialVariable
9from pySDC.helpers.stats_helper import get_sorted
10from pySDC.helpers.stats_helper import filter_stats
13def setup():
14 """
15 Routine to initialise iteration test parameters
16 """
18 # initialize level parameters
19 level_params = dict()
20 level_params['restol'] = -1
21 # Used for generating the first set of plots. Chose this because in the convergence plots the three collocation methods investigated had converged. Maybe too big? -> actually looked at results for different step sizes. There was no real difference.
22 # level_params['dt'] = 1e-3
23 level_params['dt'] = 1e-4
25 # This comes as read-in for the sweeper class
26 sweeper_params = dict()
27 sweeper_params['quad_type'] = 'RADAU-RIGHT'
29 # This comes as read-in for the problem class
30 problem_params = dict()
31 # Absolute termination tollerance for implicit solver
32 # Exactly how this is used can be adjusted in update_nodes() in the fully implicit sweeper
33 problem_params['newton_tol'] = 1e-7
35 # This comes as read-in for the step class
36 step_params = dict()
38 # initialize controller parameters
39 controller_params = dict()
40 controller_params['logger_level'] = 30
41 controller_params['hook_class'] = LogGlobalErrorPostStepDifferentialVariable
43 # Fill description dictionary for easy hierarchy creation
44 description = dict()
45 description['problem_class'] = SimpleDAE
46 description['problem_params'] = problem_params
47 description['sweeper_class'] = FullyImplicitDAE
48 description['sweeper_params'] = sweeper_params
49 description['level_params'] = level_params
50 description['step_params'] = step_params
52 # set simulation parameters
53 run_params = dict()
54 run_params['t0'] = 0.0
55 run_params['tend'] = 0.1
56 max_iter_low = 4
57 max_iter_high = 6
58 run_params['max_iter_list'] = list(range(max_iter_low, max_iter_high))
59 run_params['qd_list'] = ['IE', 'LU']
60 run_params['num_nodes_list'] = [3]
62 return description, controller_params, run_params
65def run(description, controller_params, run_params):
66 """
67 Routine to run simulation
68 """
69 conv_data = dict()
71 for qd_type in run_params['qd_list']:
72 description['sweeper_params']['QI'] = qd_type
73 conv_data[qd_type] = dict()
75 for num_nodes in run_params['num_nodes_list']:
76 description['sweeper_params']['num_nodes'] = num_nodes
77 conv_data[qd_type][num_nodes] = dict()
78 conv_data[qd_type][num_nodes]['error'] = np.zeros_like(run_params['max_iter_list'], dtype=float)
79 conv_data[qd_type][num_nodes]['residual'] = np.zeros_like(run_params['max_iter_list'], dtype=float)
80 conv_data[qd_type][num_nodes]['niter'] = np.zeros_like(run_params['max_iter_list'], dtype='int')
81 conv_data[qd_type][num_nodes]['max_iter'] = run_params['max_iter_list']
83 for i, max_iter in enumerate(run_params['max_iter_list']):
84 print('Working on Qdelta=%s -- num. nodes=%i -- max. iter.=%i' % (qd_type, num_nodes, max_iter))
85 description['step_params']['maxiter'] = max_iter
87 # instantiate the controller
88 controller = controller_nonMPI(
89 num_procs=1, controller_params=controller_params, description=description
90 )
91 # get initial values
92 P = controller.MS[0].levels[0].prob
93 uinit = P.u_exact(run_params['t0'])
95 # call main function to get things done...
96 uend, stats = controller.run(u0=uinit, t0=run_params['t0'], Tend=run_params['tend'])
98 # compute exact solution and compare
99 err = get_sorted(stats, type='e_global_differential_post_step', sortby='time')
100 residual = get_sorted(stats, type='residual_post_step', sortby='time')
101 niter = filter_stats(stats, type='niter')
103 conv_data[qd_type][num_nodes]['error'][i] = np.linalg.norm([err[j][1] for j in range(len(err))], np.inf)
104 conv_data[qd_type][num_nodes]['residual'][i] = np.linalg.norm(
105 [residual[j][1] for j in range(len(residual))], np.inf
106 )
107 conv_data[qd_type][num_nodes]['niter'][i] = round(statistics.mean(niter.values()))
108 print(
109 "Error=",
110 conv_data[qd_type][num_nodes]['error'][i],
111 " Residual=",
112 conv_data[qd_type][num_nodes]['residual'][i],
113 )
115 return conv_data
118if __name__ == "__main__":
119 """
120 Routine to run simple differential-algebraic-equation example with various max iters, preconditioners and collocation node counts
121 In contrast to run_convergence_test.py, in which max iters is set large enough to not be the limiting factor, max iters is varied for a fixed time step and the improvement in the error is measured
122 Error data is stored in a dictionary and then pickled for use with the loglog_plot.py routine
123 """
125 description, controller_params, run_params = setup()
126 conv_data = run(description, controller_params, run_params)
127 pickle.dump(conv_data, open("data/dae_iter_data.p", 'wb'))
128 print("Done")