Coverage for pySDC/projects/Monodomain/problem_classes/space_discretizazions/Parabolic_DCT.py: 82%

149 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-09 14:59 +0000

1import numpy as np 

2import scipy as sp 

3from pySDC.core.common import RegisterParams 

4from pySDC.implementations.datatype_classes.mesh import mesh 

5from pathlib import Path 

6import os 

7 

8 

9class Parabolic_DCT(RegisterParams): 

10 """ 

11 A class for the spatial discretization of the parabolic part of the monodomain equation. 

12 Here we discretize the spatial domain with a uniform mesh and use the discrete cosine transform (DCT) 

13 to discretize the Laplacian operator. The DCT is a real-to-real type of Fourier transform that is well suited for 

14 Neumann boundary conditions. 

15 

16 Parameters: 

17 ----------- 

18 problem_params: dict containing the problem parameters 

19 

20 Attributes: 

21 ----------- 

22 chi: float 

23 Surface-to-volume ratio of the cell membrane 

24 Cm: float 

25 Membrane capacitance 

26 si_l: float 

27 Longitudinal intracellular conductivity 

28 se_l: float 

29 Longitudinal extracellular conductivity 

30 si_t: float 

31 Transversal intracellular conductivity 

32 se_t: float 

33 Transversal extracellular conductivity 

34 sigma_l: float 

35 Longitudinal conductivity 

36 sigma_t: float 

37 Transversal conductivity 

38 diff_l: float 

39 Longitudinal diffusion coefficient 

40 diff_t: float 

41 Transversal diffusion coefficient 

42 diff: tuple of floats 

43 Tuple containing the diffusion coefficients 

44 dom_size: tuple of floats 

45 Tuple containing the domain size 

46 n_elems: tuple of ints 

47 Tuple containing the number of elements in each direction 

48 refinements: int 

49 Number of refinements with respect to a baseline mesh. Can be both positive (to get finer meshes) and negative (to get coarser meshes). 

50 grids: tuple of 1D arrays 

51 Tuple containing the grid points in each direction 

52 dx: tuple of floats 

53 Tuple containing the grid spacings in each direction 

54 shape: tuple of ints 

55 Tuple containing the number of grid points in each direction. Same as n_elems with with reversed order. 

56 n_dofs: int 

57 Total number of degrees of freedom 

58 dim: int 

59 Dimension of the spatial domain. Can be 1, 2 or 3. 

60 init: tuple 

61 Shape of the mesh, None and data type of the mesh (np.double) 

62 mesh_name: str 

63 Name of the mesh. Can be cube_ND, cubdoid_ND, cubdoid_ND_smaller, cubdoid_ND_small, cubdoid_ND_large, cubdoid_ND_very_large. Where N=1,2,3. 

64 diff_dct: array 

65 Array containing the discrete Laplacian operator 

66 output_folder: Path 

67 Path to the output folder 

68 output_file_path: Path 

69 Path to the output file 

70 output_file: str 

71 Name of the output file 

72 enable_output: bool 

73 If True, the solution is written to file. Else not. 

74 t_out: list 

75 List containing the output times 

76 order: int 

77 Order of the spatial discretization. Can be 2 or 4 

78 zero_stim_vec: float 

79 Used to apply zero stimili. 

80 """ 

81 

82 def __init__(self, **problem_params): 

83 self._makeAttributeAndRegister(*problem_params.keys(), localVars=problem_params, readOnly=True) 

84 

85 self.define_domain() 

86 self.define_coefficients() 

87 self.define_diffusion() 

88 self.define_stimulus() 

89 

90 def __del__(self): 

91 if self.enable_output: 

92 # Close the output file 

93 self.output_file.close() 

94 # Save the output times and the grid points 

95 with open( 

96 self.output_file_path.parent / Path(self.output_file_name + '_txyz').with_suffix(".npy"), 'wb' 

97 ) as f: 

98 np.save(f, np.array(self.t_out)) 

99 xyz = self.grids 

100 for i in range(self.dim): 

101 np.save(f, xyz[i]) 

102 

103 @property 

104 def mesh_name(self): 

105 return "ref_" + str(self.refinements) 

106 

107 def define_coefficients(self): 

108 self.chi = 140.0 # mm^-1 

109 self.Cm = 0.01 # uF/mm^2 

110 self.si_l = 0.17 # mS/mm 

111 self.se_l = 0.62 # mS/mm 

112 self.si_t = 0.019 # mS/mm 

113 self.se_t = 0.24 # mS/mm 

114 

115 if "cube" in self.domain_name: 

116 # For this domain we use isotropic conductivities 

117 self.si_t = self.si_l 

118 self.se_t = self.se_l 

119 

120 self.sigma_l = self.si_l * self.se_l / (self.si_l + self.se_l) 

121 self.sigma_t = self.si_t * self.se_t / (self.si_t + self.se_t) 

122 self.diff_l = self.sigma_l / self.chi / self.Cm 

123 self.diff_t = self.sigma_t / self.chi / self.Cm 

124 

125 if self.dim == 1: 

126 self.diff = (self.diff_l,) 

127 elif self.dim == 2: 

128 self.diff = (self.diff_l, self.diff_t) 

129 else: 

130 self.diff = (self.diff_l, self.diff_t, self.diff_t) 

131 

132 def define_domain(self): 

133 if "cube" in self.domain_name: 

134 self.dom_size = (100.0, 100.0, 100.0) 

135 self.dim = int(self.domain_name[5]) 

136 else: # cuboid 

137 if "smaller" in self.domain_name: 

138 self.dom_size = (10.0, 4.5, 2.0) 

139 elif "small" in self.domain_name: 

140 self.dom_size = (5.0, 3.0, 1.0) 

141 elif "very_large" in self.domain_name: 

142 self.dom_size = (280.0, 112.0, 48.0) 

143 elif "large" in self.domain_name: 

144 self.dom_size = (60.0, 21.0, 9.0) 

145 else: 

146 self.dom_size = (20.0, 7.0, 3.0) 

147 self.dim = int(self.domain_name[7]) 

148 

149 self.dom_size = self.dom_size[: self.dim] 

150 self.n_elems = [int(2 ** np.round(np.log2(5.0 * L * 2**self.refinements))) for L in self.dom_size] 

151 self.grids, self.dx = self.get_grids_dx(self.dom_size, self.n_elems) 

152 

153 self.shape = tuple(np.flip([x.size for x in self.grids])) 

154 self.n_dofs = int(np.prod(self.shape)) 

155 self.init = ((self.n_dofs,), None, np.dtype('float64')) 

156 

157 def define_diffusion(self): 

158 N = self.n_elems 

159 dx = self.dx 

160 dim = len(N) 

161 if self.order == 2: 

162 diff_dct = self.diff[0] * (2.0 * np.cos(np.pi * np.arange(N[0]) / N[0]) - 2.0) / dx[0] ** 2 

163 if dim >= 2: 

164 diff_dct = ( 

165 diff_dct[None, :] 

166 + self.diff[1] 

167 * np.array((2.0 * np.cos(np.pi * np.arange(N[1]) / N[1]) - 2.0) / dx[1] ** 2)[:, None] 

168 ) 

169 if dim >= 3: 

170 diff_dct = ( 

171 diff_dct[None, :, :] 

172 + self.diff[2] 

173 * np.array((2.0 * np.cos(np.pi * np.arange(N[2]) / N[2]) - 2.0) / dx[2] ** 2)[:, None, None] 

174 ) 

175 elif self.order == 4: 

176 diff_dct = ( 

177 self.diff[0] 

178 * ( 

179 (-1.0 / 6.0) * np.cos(2.0 * np.pi * np.arange(N[0]) / N[0]) 

180 + (8.0 / 3.0) * np.cos(np.pi * np.arange(N[0]) / N[0]) 

181 - 2.5 

182 ) 

183 / dx[0] ** 2 

184 ) 

185 if dim >= 2: 

186 diff_dct = ( 

187 diff_dct[None, :] 

188 + self.diff[1] 

189 * np.array( 

190 ( 

191 (-1.0 / 6.0) * np.cos(2.0 * np.pi * np.arange(N[1]) / N[1]) 

192 + (8.0 / 3.0) * np.cos(np.pi * np.arange(N[1]) / N[1]) 

193 - 2.5 

194 ) 

195 / dx[1] ** 2 

196 )[:, None] 

197 ) 

198 if dim >= 3: 

199 diff_dct = ( 

200 diff_dct[None, :, :] 

201 + self.diff[2] 

202 * np.array( 

203 ( 

204 (-1.0 / 6.0) * np.cos(2.0 * np.pi * np.arange(N[2]) / N[2]) 

205 + (8.0 / 3.0) * np.cos(np.pi * np.arange(N[2]) / N[2]) 

206 - 2.5 

207 ) 

208 / dx[2] ** 2 

209 )[:, None, None] 

210 ) 

211 else: 

212 raise NotImplementedError("Only order 2 and 4 are implemented for Parabolic_DCT.") 

213 

214 self.diff_dct = diff_dct 

215 

216 def grids_from_x(self, x): 

217 dim = len(x) 

218 if dim == 1: 

219 return (x[0],) 

220 elif dim == 2: 

221 return (x[0][None, :], x[1][:, None]) 

222 elif dim == 3: 

223 return (x[0][None, None, :], x[1][None, :, None], x[2][:, None, None]) 

224 

225 def get_grids_dx(self, dom_size, N): 

226 # The grid points are the midpoints of the elements, hence x_{n+1/2}=(n+1/2)*dx 

227 # This is needed for the DCT. 

228 x = [np.linspace(0, dom_size[i], 2 * N[i] + 1) for i in range(len(N))] 

229 x = [xi[1::2] for xi in x] 

230 dx = [xi[1] - xi[0] for xi in x] 

231 return self.grids_from_x(x), dx 

232 

233 def define_stimulus(self): 

234 self.zero_stim_vec = 0.0 

235 # all remaining stimulus parameters are set in MonodomainODE 

236 

237 def solve_system(self, rhs, factor, u0, t, u_sol): 

238 """ 

239 Solve the linear system: u_sol = (I - factor * A)^{-1} rhs 

240 

241 Arguments: 

242 ---------- 

243 rhs: mesh 

244 The right-hand side of the linear system 

245 factor: float 

246 The factor in the linear system multiplying the Laplacian 

247 u0: mesh 

248 The initial guess for the solution. Not used here since we use a direct solver. 

249 t: float 

250 The current time. Not used here since the Laplacian is time-independent. 

251 u_sol: mesh 

252 The vector to store the solution in. 

253 """ 

254 rhs_hat = sp.fft.dctn(rhs.reshape(self.shape)) 

255 u_sol_hat = rhs_hat / (1.0 - factor * self.diff_dct) 

256 u_sol[:] = sp.fft.idctn(u_sol_hat).ravel() 

257 

258 return u_sol 

259 

260 def add_disc_laplacian(self, uh, res): 

261 """ 

262 Add the discrete Laplacian operator to res: res += A * uh 

263 """ 

264 res[:] += sp.fft.idctn(self.diff_dct * sp.fft.dctn(uh.reshape(self.shape))).ravel() 

265 

266 def init_output(self, output_folder): 

267 # Initialize the output parameters and file 

268 self.output_folder = output_folder 

269 self.output_file_path = self.output_folder / Path(self.output_file_name).with_suffix(".npy") 

270 if self.enable_output: 

271 if self.output_file_path.is_file(): 

272 os.remove(self.output_file_path) 

273 if not self.output_folder.is_dir(): 

274 os.makedirs(self.output_folder) 

275 self.output_file = open(self.output_file_path, 'wb') 

276 self.t_out = [] 

277 

278 def write_solution(self, uh, t): 

279 # Write the solution to file. Meant for visualization, hence we print the time stamp too. 

280 # Usually we only write the first component of the solution, hence the electric potential V and not the ionic model state variables. 

281 if self.enable_output: 

282 np.save(self.output_file, uh.reshape(self.shape)) 

283 self.t_out.append(t) 

284 

285 def write_reference_solution(self, uh, indeces): 

286 """ 

287 Write the solution to file. This is meant to print solutions that will be used as reference solutions 

288 and compute errors or as well solutions that will be used as initial values for other simulations. 

289 Here we write the model variables listed in indeces. 

290 """ 

291 if self.output_file_path.is_file(): 

292 os.remove(self.output_file_path) 

293 if not self.output_file_path.parent.is_dir(): 

294 os.makedirs(self.output_file_path.parent) 

295 with open(self.output_file_path, 'wb') as file: 

296 [np.save(file, uh[i].reshape(self.shape)) for i in indeces] 

297 

298 def read_reference_solution(self, uh, indeces, ref_file_name): 

299 """ 

300 Read a reference solution from file. It can be used to set the initial values of a simulation 

301 or to compute errors. 

302 We read the model variables listed in indeces. 

303 """ 

304 if ref_file_name == "": 

305 return False 

306 ref_sol_path = Path(self.output_folder) / Path(ref_file_name).with_suffix(".npy") 

307 if ref_sol_path.is_file(): 

308 with open(ref_sol_path, 'rb') as f: 

309 for i in indeces: 

310 uh[i][:] = np.load(f).ravel() 

311 return True 

312 else: 

313 return False 

314 

315 def stim_region(self, stim_center, stim_radius): 

316 """ 

317 Define the region where the stimulus is applied, given the center and the radius of the stimulus. 

318 Returns a vector of the same size as the grid, with 1s inside the stimulus region and 0s outside. 

319 """ 

320 grids = self.grids 

321 coord_inside_stim_box = [] 

322 for i in range(len(grids)): 

323 coord_inside_stim_box.append(abs(grids[i] - stim_center[i]) < stim_radius[i]) 

324 

325 inside_stim_box = True 

326 for i in range(len(grids)): 

327 inside_stim_box = np.logical_and(inside_stim_box, coord_inside_stim_box[i]) 

328 

329 stim = mesh(self.init) 

330 stim[:] = inside_stim_box.ravel().astype(float) 

331 

332 return stim 

333 

334 def compute_errors(self, uh, ref_sol): 

335 # Compute L2 errors with respect to the reference solution 

336 error_L2 = np.linalg.norm(uh - ref_sol) 

337 sol_norm_L2 = np.linalg.norm(ref_sol) 

338 rel_error_L2 = error_L2 / sol_norm_L2 

339 

340 return error_L2, rel_error_L2