Coverage for pySDC/projects/SDC_showdown/SDC_timing_GrayScott.py: 79%

146 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-09 14:59 +0000

1import os 

2import pickle 

3 

4import numpy as np 

5from petsc4py import PETSc 

6 

7import pySDC.helpers.plot_helper as plt_helper 

8from pySDC.helpers.stats_helper import get_sorted 

9 

10from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI 

11from pySDC.implementations.problem_classes.GrayScott_2D_PETSc_periodic import ( 

12 petsc_grayscott_multiimplicit, 

13 petsc_grayscott_fullyimplicit, 

14 petsc_grayscott_semiimplicit, 

15) 

16from pySDC.implementations.sweeper_classes.generic_implicit import generic_implicit 

17from pySDC.implementations.sweeper_classes.imex_1st_order import imex_1st_order 

18from pySDC.implementations.sweeper_classes.multi_implicit import multi_implicit 

19 

20 

21def setup_parameters(): 

22 """ 

23 Helper routine to fill in all relevant parameters 

24 

25 Note that this file will be used for all versions of SDC, containing more than necessary for each individual run 

26 

27 Returns: 

28 description (dict) 

29 controller_params (dict) 

30 """ 

31 

32 # initialize level parameters 

33 level_params = dict() 

34 level_params['restol'] = 1e-08 

35 level_params['dt'] = 1.0 

36 level_params['nsweeps'] = [1] 

37 

38 # initialize sweeper parameters 

39 sweeper_params = dict() 

40 sweeper_params['quad_type'] = 'RADAU-RIGHT' 

41 sweeper_params['num_nodes'] = [3] 

42 sweeper_params['Q1'] = ['LU'] 

43 sweeper_params['Q2'] = ['LU'] 

44 sweeper_params['QI'] = ['LU'] 

45 sweeper_params['initial_guess'] = 'zero' 

46 

47 # initialize problem parameters 

48 problem_params = dict() 

49 problem_params['Du'] = 1.0 

50 problem_params['Dv'] = 0.01 

51 problem_params['A'] = 0.09 

52 problem_params['B'] = 0.086 

53 problem_params['nvars'] = [(128, 128)] 

54 problem_params['nlsol_tol'] = 1e-10 

55 problem_params['nlsol_maxiter'] = 100 

56 problem_params['lsol_tol'] = 1e-10 

57 problem_params['lsol_maxiter'] = 100 

58 

59 # initialize step parameters 

60 step_params = dict() 

61 step_params['maxiter'] = 50 

62 

63 # initialize space transfer parameters 

64 # space_transfer_params = dict() 

65 # space_transfer_params['finter'] = True 

66 

67 # initialize controller parameters 

68 controller_params = dict() 

69 controller_params['logger_level'] = 30 

70 

71 # fill description dictionary for easy step instantiation 

72 description = dict() 

73 description['problem_class'] = None # pass problem class 

74 description['problem_params'] = problem_params # pass problem parameters 

75 description['sweeper_class'] = None # pass sweeper (see part B) 

76 description['sweeper_params'] = sweeper_params # pass sweeper parameters 

77 description['level_params'] = level_params # pass level parameters 

78 description['step_params'] = step_params # pass step parameters 

79 # description['space_transfer_class'] = mesh_to_mesh_petsc_dmda # pass spatial transfer class 

80 # description['space_transfer_params'] = space_transfer_params # pass paramters for spatial transfer 

81 

82 return description, controller_params 

83 

84 

85def run_SDC_variant(variant=None, inexact=False, cwd=''): 

86 """ 

87 Routine to run particular SDC variant 

88 

89 Args: 

90 variant (str): string describing the variant 

91 inexact (bool): flag to use inexact nonlinear solve (or nor) 

92 cwd (str): current working directory 

93 

94 Returns: 

95 timing (float) 

96 niter (float) 

97 """ 

98 

99 # load (incomplete) default parameters 

100 description, controller_params = setup_parameters() 

101 

102 # add stuff based on variant 

103 if variant == 'fully-implicit': 

104 description['problem_class'] = petsc_grayscott_fullyimplicit 

105 description['sweeper_class'] = generic_implicit 

106 elif variant == 'semi-implicit': 

107 description['problem_class'] = petsc_grayscott_semiimplicit 

108 description['sweeper_class'] = imex_1st_order 

109 elif variant == 'multi-implicit': 

110 description['problem_class'] = petsc_grayscott_multiimplicit 

111 description['sweeper_class'] = multi_implicit 

112 else: 

113 raise NotImplementedError('Wrong variant specified, got %s' % variant) 

114 

115 if inexact: 

116 description['problem_params']['lsol_maxiter'] = 2 

117 description['problem_params']['nlsol_maxiter'] = 1 

118 out = 'Working on inexact %s variant...' % variant 

119 else: 

120 out = 'Working on exact %s variant...' % variant 

121 print(out) 

122 

123 # set time parameters 

124 t0 = 0.0 

125 Tend = 1.0 

126 

127 # instantiate controller 

128 controller = controller_nonMPI(num_procs=1, controller_params=controller_params, description=description) 

129 

130 # get initial values on finest level 

131 P = controller.MS[0].levels[0].prob 

132 uinit = P.u_exact(t0) 

133 

134 # call main function to get things done... 

135 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend) 

136 

137 # load reference solution to compare with 

138 fname = cwd + 'data/GS_reference.dat' 

139 viewer = PETSc.Viewer().createBinary(fname, 'r') 

140 uex = P.u_exact(t0) 

141 uex[:] = PETSc.Vec().load(viewer) 

142 err = abs(uex - uend) 

143 

144 # filter statistics by variant (number of iterations) 

145 iter_counts = get_sorted(stats, type='niter', sortby='time') 

146 

147 # compute and print statistics 

148 niters = np.array([item[1] for item in iter_counts]) 

149 out = ' Mean number of iterations: %4.2f' % np.mean(niters) 

150 print(out) 

151 out = ' Range of values for number of iterations: %2i ' % np.ptp(niters) 

152 print(out) 

153 out = ' Position of max/min number of iterations: %2i -- %2i' % (int(np.argmax(niters)), int(np.argmin(niters))) 

154 print(out) 

155 out = ' Std and var for number of iterations: %4.2f -- %4.2f' % (float(np.std(niters)), float(np.var(niters))) 

156 print(out) 

157 

158 print('Iteration count (nonlinear/linear): %i / %i' % (P.snes_itercount, P.ksp_itercount)) 

159 print( 

160 'Mean Iteration count per call: %4.2f / %4.2f' 

161 % (P.snes_itercount / max(P.snes_ncalls, 1), P.ksp_itercount / max(P.ksp_ncalls, 1)) 

162 ) 

163 

164 timing = get_sorted(stats, type='timing_run', sortby='time') 

165 

166 print('Time to solution: %6.4f sec.' % timing[0][1]) 

167 print('Error vs. reference solution: %6.4e' % err) 

168 print() 

169 

170 assert err < 3e-06, 'ERROR: variant %s did not match error tolerance, got %s' % (variant, err) 

171 assert np.mean(niters) <= 10, 'ERROR: number of iterations is too high, got %s' % np.mean(niters) 

172 

173 return timing[0][1], np.mean(niters) 

174 

175 

176def show_results(fname): 

177 """ 

178 Plotting routine 

179 

180 Args: 

181 fname: file name to read in and name plots 

182 """ 

183 

184 file = open(fname + '.pkl', 'rb') 

185 results = pickle.load(file) 

186 file.close() 

187 

188 plt_helper.mpl.style.use('classic') 

189 plt_helper.setup_mpl() 

190 

191 plt_helper.newfig(textwidth=238.96, scale=1.0) 

192 

193 xcoords = list(range(len(results))) 

194 sorted_data = sorted([(key, results[key][0]) for key in results], reverse=True, key=lambda tup: tup[1]) 

195 heights = [item[1] for item in sorted_data] 

196 keys = [(item[0][1] + ' ' + item[0][0]).replace('-', '\n') for item in sorted_data] 

197 

198 plt_helper.plt.bar(xcoords, heights, align='center') 

199 

200 plt_helper.plt.xticks(xcoords, keys, rotation=90) 

201 plt_helper.plt.ylabel('time (sec)') 

202 

203 # save plot, beautify 

204 plt_helper.savefig(fname) 

205 

206 assert os.path.isfile(fname + '.pdf'), 'ERROR: plotting did not create PDF file' 

207 # assert os.path.isfile(fname + '.pgf'), 'ERROR: plotting did not create PGF file' 

208 assert os.path.isfile(fname + '.png'), 'ERROR: plotting did not create PNG file' 

209 

210 return None 

211 

212 

213def run_reference(): 

214 """ 

215 Helper routine to create a reference solution using very high order SDC and small time-steps 

216 """ 

217 

218 description, controller_params = setup_parameters() 

219 

220 description['problem_class'] = petsc_grayscott_semiimplicit 

221 description['sweeper_class'] = imex_1st_order 

222 description['sweeper_params']['num_nodes'] = 9 

223 description['level_params']['dt'] = 0.01 

224 

225 # set time parameters 

226 t0 = 0.0 

227 Tend = 1.0 

228 

229 # instantiate controller 

230 controller = controller_nonMPI(num_procs=1, controller_params=controller_params, description=description) 

231 

232 # get initial values on finest level 

233 P = controller.MS[0].levels[0].prob 

234 uinit = P.u_exact(t0) 

235 

236 # call main function to get things done... 

237 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend) 

238 

239 # filter statistics by variant (number of iterations) 

240 iter_counts = get_sorted(stats, type='niter', sortby='time') 

241 

242 # compute and print statistics 

243 niters = np.array([item[1] for item in iter_counts]) 

244 out = ' Mean number of iterations: %4.2f' % np.mean(niters) 

245 print(out) 

246 out = ' Range of values for number of iterations: %2i ' % np.ptp(niters) 

247 print(out) 

248 out = ' Position of max/min number of iterations: %2i -- %2i' % (int(np.argmax(niters)), int(np.argmin(niters))) 

249 print(out) 

250 out = ' Std and var for number of iterations: %4.2f -- %4.2f' % (float(np.std(niters)), float(np.var(niters))) 

251 print(out) 

252 

253 print('Iteration count (nonlinear/linear): %i / %i' % (P.snes_itercount, P.ksp_itercount)) 

254 print( 

255 'Mean Iteration count per call: %4.2f / %4.2f' 

256 % (P.snes_itercount / max(P.snes_ncalls, 1), P.ksp_itercount / max(P.ksp_ncalls, 1)) 

257 ) 

258 

259 timing = get_sorted(stats, type='timing_run', sortby='time') 

260 

261 print('Time to solution: %6.4f sec.' % timing[0][1]) 

262 

263 fname = 'data/GS_reference.dat' 

264 viewer = PETSc.Viewer().createBinary(fname, 'w') 

265 viewer.view(uend) 

266 

267 assert os.path.isfile(fname), 'ERROR: PETSc did not create file' 

268 

269 return None 

270 

271 

272def main(cwd=''): 

273 """ 

274 Main driver 

275 

276 Args: 

277 cwd (str): current working directory (need this for testing) 

278 """ 

279 

280 # Loop over variants, exact and inexact solves 

281 results = {} 

282 for variant in ['fully-implicit', 'multi-implicit', 'semi-implicit']: 

283 results[(variant, 'exact')] = run_SDC_variant(variant=variant, inexact=False, cwd=cwd) 

284 results[(variant, 'inexact')] = run_SDC_variant(variant=variant, inexact=True, cwd=cwd) 

285 

286 # dump result 

287 fname = 'data/timings_SDC_variants_GrayScott' 

288 file = open(fname + '.pkl', 'wb') 

289 pickle.dump(results, file) 

290 file.close() 

291 assert os.path.isfile(fname + '.pkl'), 'ERROR: pickle did not create file' 

292 

293 # visualize 

294 show_results(fname) 

295 

296 

297if __name__ == "__main__": 

298 # run_reference() 

299 main()