Coverage for pySDC/projects/Monodomain/sweeper_classes/exponential_runge_kutta/imexexp_1st_order.py: 95%
121 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
1import numpy as np
3from pySDC.core.sweeper import Sweeper
4from pySDC.core.errors import CollocationError, ParameterError
5from pySDC.core.collocation import CollBase
6import numdifftools.fornberg as fornberg
7import scipy
10class imexexp_1st_order(Sweeper):
11 """
12 Custom sweeper class, implements Sweeper.py
14 First-order IMEXEXP sweeper using implicit/explicit/exponential Euler as base integrator
15 In the cardiac electrphysiology community this is known as Rush-Larsen scheme.
17 The underlying intergrator is exponential Runge-Kutta, leading to exponential SDC (ESDC).
18 """
20 def __init__(self, params):
21 """
22 Initialization routine for the custom sweeper
24 Args:
25 params: parameters for the sweeper
26 """
28 if "QI" not in params:
29 params["QI"] = "IE"
31 # call parent's initialization routine
32 super(imexexp_1st_order, self).__init__(params)
34 # IMEX integration matrices
35 self.QI = self.get_Qdelta_implicit(qd_type=self.params.QI)
36 self.delta = np.diagonal(self.QI)[1:]
38 # Compute weights w such that PiQ^(k)(0) = sum_{j=0}^{M-1} w[k,j]*Q[j], k=0,...,M-1
39 # Used to express the derivatives of a polynomial in x=0 in terms of the values of the polynomial at the collocation nodes
40 M = self.coll.num_nodes
41 c = self.coll.nodes
42 self.w = fornberg.fd_weights_all(c, 0.0, M - 1).transpose()
44 # Define the quadature rule for the evaluation of the phi_i(z) functions. Indeed, we evaluate them as integrals in order to avoid round off errors.
45 phi_num_nodes = 5 # seems to be enough in most cases
46 self.phi_coll = CollBase(num_nodes=phi_num_nodes, tleft=0, tright=1, node_type='LEGENDRE', quad_type='GAUSS')
48 def phi_eval(self, factors, indeces, phi, lmbda):
49 """
50 Evaluate the phi_k functions at the points factors[i]*lmbda, for all k in indeces
52 Arguments:
53 factors: list of factors to multiply lmbda with.
54 indeces: list of indeces k for the phi_k functions. Since we use the integral formulation, k=0 is not allowed (not needed neither).
55 phi: an instance of mesh with shape (len(factors),len(indeces),*lmbda.shape) (i.e., some space to store the results)
56 it will filled as: phi[i,k][:] = phi_{indeces[k]}(factor[i]*lmbda[:])
57 lmbda: dtype_u: the value of lmbda
58 """
60 assert 0 not in indeces, "phi_0 is not implemented, since the integral definition is not valid for k=0."
62 # the quadrature rule used to evaluate the phi functions as integrals. This is not the same as the one used in the ESDC method!!!!
63 c = self.phi_coll.nodes
64 b = self.phi_coll.weights
66 k = np.array(indeces)
67 km1_fac = scipy.special.factorial(k - 1) # (k-1)!
69 # Here we use the quadrature rule to approximate the integral
70 # phi_{k}(factor[i]*lmbda[:,:])= \int_0^1 e^{(1-s)*factor[i]*lambda[:,:]}*s^{k-1}/(k-1)! ds
72 # First, compute e^((1-c[j])*factor[i]*lmbda[:]) for nodes c[j] on the quadrature rule and all factors[i]
73 exp_terms = np.exp(((1.0 - c[None, :, None, None]) * factors[:, None, None, None]) * lmbda[None, None, :, :])
74 # Then, compute the terms c[j]^{k-1}/(k-1)! for all nodes c[j] and all k and multiply with the weights b[j]
75 wgt_tmp = (b[:, None] * c[:, None] ** (k[None, :] - 1)) / km1_fac[None, :]
76 # Finally, compute the integral by summing over the quadrature nodes
77 phi[:] = np.sum(wgt_tmp[None, :, :, None, None] * exp_terms[:, :, None, :, :], axis=1)
79 def compute_lambda_phi_Qmat_exp(self):
81 if not hasattr(self, "u_old"):
82 # make some space for the old value of u[0]
83 self.u_old = self.level.prob.dtype_u(init=self.level.prob.init, val=0.0)
85 # everything that is computed in this if statement depends on u[0] only
86 # To save computations we recompute that only if u[0] has changed.
87 # Also, we check only for the first component u[0][0] of u[0] to save more computations.
88 # Remember that u[0][0] is a vector representing the electric potential on the whole mesh and is enough to check if the whole u[0] has changed.
89 if not np.allclose(self.u_old[0], self.level.u[0][0], rtol=1e-10, atol=1e-10):
91 self.u_old[:] = self.level.u[0]
93 L = self.level
94 P = L.prob
95 M = self.coll.num_nodes
96 c = self.coll.nodes
98 # compute lambda(u) of the exponential term f_exp(u)=lmbda(u)*(u-y_inf(u))
99 # and select only the indeces with exponential terms (others are zeros)
100 self.lmbda = P.lmbda_eval(L.u[0], L.time)[P.rhs_exp_indeces]
102 if not hasattr(self, "phi"):
103 # make some space
104 self.phi = P.dtype_u(init=P.init_exp_extruded((M, M)), val=0.0)
105 self.phi_one = P.dtype_u(init=P.init_exp_extruded((M, 1)), val=0.0)
107 # evaluate the phi_k(dt*c_i*lambda) functions at the collocation nodes c_i for k=1,...,M
108 self.phi_eval(L.dt * c, list(range(1, M + 1)), self.phi, self.lmbda)
109 # evaluates phi_1(dt*delta_i*lambda) for delta_i = c_i - c_{i-1}
110 self.phi_eval(L.dt * self.delta, [1], self.phi_one, self.lmbda)
112 # compute weight for the integration of \int_0^ci exp(dt*(ci-r)lmbda)*PiQ(r)dr,
113 # where PiQ(r) is a polynomial interpolating some nodal values Q(c_i)=Q[i].
114 # The integral of PiQ will be approximated as:
115 # \int_0^ci exp(dt*(ci-r)lmbda)*PiQ(r)dr ~= \sum_{j=0}^{M-1} Qmat_exp[i,j]*Q[j]
117 k = np.arange(0, M)
118 wgt_tmp = self.w[None, :, :] * c[:, None, None] ** (k[None, None, :] + 1)
119 self.Qmat_exp = np.sum(wgt_tmp[:, :, :, None, None] * self.phi[:, None, :, :, :], axis=2)
121 def integrate(self):
122 """
123 Integrates the right-hand side (here impl + expl + exp) using exponential Runge-Kutta
125 Returns:
126 list of dtype_u: containing the integral as values
127 """
129 # get current level and problem description
130 L = self.level
131 P = L.prob
132 M = self.coll.num_nodes
134 self.compute_lambda_phi_Qmat_exp()
136 if not hasattr(self, "Q"):
137 self.Q = P.dtype_u(init=P.init_exp_extruded((M,)), val=0.0)
139 for k in range(M):
140 self.Q[k][:] = L.f[k + 1].exp[P.rhs_exp_indeces] + self.lmbda * (
141 L.u[0][P.rhs_exp_indeces] - L.u[k + 1][P.rhs_exp_indeces]
142 )
144 # integrate RHS over all collocation nodes
145 me = [P.dtype_u(init=P.init, val=0.0) for _ in range(M)]
146 for m in range(1, M + 1):
147 for j in range(1, M + 1):
148 me[m - 1][P.rhs_stiff_indeces] += self.coll.Qmat[m, j] * L.f[j].impl[P.rhs_stiff_indeces]
149 me[m - 1][P.rhs_nonstiff_indeces] += self.coll.Qmat[m, j] * L.f[j].expl[P.rhs_nonstiff_indeces]
150 me[m - 1][P.rhs_exp_indeces] += np.sum(self.Qmat_exp[m - 1] * self.Q, axis=0)
152 me[m - 1] *= L.dt
154 return me
156 def update_nodes(self):
157 """
158 Update the u- and f-values at the collocation nodes -> corresponds to a single sweep over all nodes
160 Returns:
161 None
162 """
164 # get current level and problem description
165 L = self.level
166 P = L.prob
168 # only if the level has been touched before
169 assert L.status.unlocked
171 # get number of collocation nodes for easier access
172 M = self.coll.num_nodes
174 integral = self.integrate()
175 for m in range(M):
176 if L.tau[m] is not None:
177 integral[m] += L.tau[m]
178 for i in range(1, M):
179 integral[M - i] -= integral[M - i - 1]
181 # prepare the integral term
182 for m in range(M):
183 integral[m][P.rhs_stiff_indeces] += -L.dt * self.delta[m] * L.f[m + 1].impl[P.rhs_stiff_indeces]
184 integral[m][P.rhs_nonstiff_indeces] += -L.dt * self.delta[m] * L.f[m].expl[P.rhs_nonstiff_indeces]
185 integral[m][P.rhs_exp_indeces] += (
186 -L.dt
187 * self.delta[m]
188 * self.phi_one[m][0]
189 * (L.f[m].exp[P.rhs_exp_indeces] + self.lmbda * (L.u[0][P.rhs_exp_indeces] - L.u[m][P.rhs_exp_indeces]))
190 )
192 # do the sweep
193 for m in range(M):
195 tmp = L.u[m] + integral[m]
196 tmp[P.rhs_exp_indeces] += (
197 L.dt
198 * self.delta[m]
199 * self.phi_one[m][0]
200 * (L.f[m].exp[P.rhs_exp_indeces] + self.lmbda * (L.u[0][P.rhs_exp_indeces] - L.u[m][P.rhs_exp_indeces]))
201 )
202 tmp[P.rhs_nonstiff_indeces] += L.dt * self.delta[m] * L.f[m].expl[P.rhs_nonstiff_indeces]
204 # implicit solve with prefactor stemming from QI
205 L.u[m + 1] = P.solve_system(
206 tmp, L.dt * self.QI[m + 1, m + 1], L.u[m + 1], L.time + L.dt * self.coll.nodes[m], L.u[m + 1]
207 )
209 # update function values
210 P.eval_f(L.u[m + 1], L.time + L.dt * self.coll.nodes[m], fh=L.f[m + 1])
212 # indicate presence of new values at this level
213 L.status.updated = True
215 return None
217 def compute_end_point(self):
218 """
219 Compute u at the right point of the interval
221 The value uend computed here is a full evaluation of the Picard formulation unless do_full_update==False
223 Returns:
224 None
225 """
227 # get current level and problem description
228 L = self.level
229 P = L.prob
231 # check if Mth node is equal to right point and do_coll_update is false, perform a simple copy
232 if self.coll.right_is_node and not self.params.do_coll_update:
233 # a copy is sufficient
234 L.uend = P.dtype_u(L.u[-1])
235 else:
236 raise CollocationError("This option is not implemented yet.")
238 return None
240 def rel_norm(self, a, b):
241 norms = []
242 for i in range(len(a)):
243 norms.append(np.linalg.norm(a[i]) / np.linalg.norm(b[i]))
244 return np.average(norms)
246 def compute_residual(self, stage=''):
247 """
248 Computation of the residual using the collocation matrix Q
250 Args:
251 stage (str): The current stage of the step the level belongs to
252 """
254 # get current level and problem description
255 L = self.level
257 # Check if we want to skip the residual computation to gain performance
258 # Keep in mind that skipping any residual computation is likely to give incorrect outputs of the residual!
259 if stage in self.params.skip_residual_computation:
260 L.status.residual = 0.0 if L.status.residual is None else L.status.residual
261 return None
263 # check if there are new values (e.g. from a sweep)
264 # assert L.status.updated
266 # compute the residual for each node
268 # build QF(u)
269 res_norm = []
270 rel_res_norm = []
271 res = self.integrate()
272 for m in range(self.coll.num_nodes):
273 res[m] += L.u[0]
274 res[m] -= L.u[m + 1]
275 # add tau if associated
276 if L.tau[m] is not None:
277 res[m] += L.tau[m]
278 # use abs function from data type here
279 res_norm.append(abs(res[m]))
280 # the different components of the monodomain equation have very different magnitude therefore we use a tailored relative norm here to avoid the cancellation of the smaller components
281 rel_res_norm.append(self.rel_norm(res[m], L.u[0]))
283 # find maximal residual over the nodes
284 if L.params.residual_type == 'full_abs':
285 L.status.residual = max(res_norm)
286 elif L.params.residual_type == 'last_abs':
287 L.status.residual = res_norm[-1]
288 elif L.params.residual_type == 'full_rel':
289 L.status.residual = max(rel_res_norm)
290 elif L.params.residual_type == 'last_rel':
291 L.status.residual = rel_res_norm[-1]
292 else:
293 raise ParameterError(
294 f'residual_type = {L.params.residual_type} not implemented, choose '
295 f'full_abs, last_abs, full_rel or last_rel instead'
296 )
298 # indicate that the residual has seen the new values
299 L.status.updated = False
301 return None