Coverage for pySDC/projects/parallelSDC_reloaded/utils.py: 100%

168 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-19 09:13 +0000

1#!/usr/bin/env python3 

2# -*- coding: utf-8 -*- 

3""" 

4Created on Sun Nov 12 18:50:39 2023 

5 

6Utility functions to investigate parallel SDC on non-linear problems 

7""" 

8import os 

9import json 

10import numpy as np 

11from time import time 

12import warnings 

13 

14from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI 

15 

16from pySDC.implementations.problem_classes.Van_der_Pol_implicit import vanderpol 

17from pySDC.implementations.problem_classes.Lorenz import LorenzAttractor 

18from pySDC.implementations.problem_classes.odeScalar import ProtheroRobinson 

19from pySDC.implementations.problem_classes.odeSystem import ( 

20 ProtheroRobinsonAutonomous, 

21 Kaps, 

22 ChemicalReaction3Var, 

23 JacobiElliptic, 

24) 

25from pySDC.implementations.problem_classes.AllenCahn_1D_FD import ( 

26 allencahn_front_fullyimplicit, 

27 allencahn_periodic_fullyimplicit, 

28) 

29from pySDC.implementations.problem_classes.TestEquation_0D import testequation0d 

30 

31from pySDC.implementations.sweeper_classes.generic_implicit import generic_implicit 

32import pySDC.implementations.sweeper_classes.Runge_Kutta as rk 

33 

34import matplotlib.pyplot as plt 

35 

36PATH = '/' + os.path.join(*__file__.split('/')[:-1]) 

37 

38# General matplotlib settings 

39plt.rc('font', size=12) 

40plt.rcParams['lines.linewidth'] = 2 

41plt.rcParams['axes.titlesize'] = 16 

42plt.rcParams['axes.labelsize'] = 16 

43plt.rcParams['xtick.labelsize'] = 15 

44plt.rcParams['ytick.labelsize'] = 15 

45plt.rcParams['xtick.major.pad'] = 3 

46plt.rcParams['ytick.major.pad'] = 2 

47plt.rcParams['axes.labelpad'] = 6 

48plt.rcParams['markers.fillstyle'] = 'none' 

49plt.rcParams['lines.markersize'] = 7.0 

50plt.rcParams['lines.markeredgewidth'] = 1.5 

51plt.rcParams['mathtext.fontset'] = 'cm' 

52plt.rcParams['mathtext.rm'] = 'serif' 

53plt.rcParams['figure.max_open_warning'] = 100 

54 

55 

56def getParamsSDC( 

57 quadType="RADAU-RIGHT", numNodes=4, qDeltaI="IE", nSweeps=3, nodeType="LEGENDRE", collUpdate=False, initType="copy" 

58): 

59 description = { 

60 # Sweeper and its parameters 

61 "sweeper_class": generic_implicit, 

62 "sweeper_params": { 

63 "quad_type": quadType, 

64 "num_nodes": numNodes, 

65 "node_type": nodeType, 

66 "initial_guess": initType, 

67 "do_coll_update": collUpdate, 

68 "QI": qDeltaI, 

69 'skip_residual_computation': ('IT_CHECK', 'IT_DOWN', 'IT_UP', 'IT_FINE', 'IT_COARSE'), 

70 }, 

71 # Step parameters 

72 "step_params": { 

73 "maxiter": 1, 

74 }, 

75 # Level parameters 

76 "level_params": { 

77 "restol": -1, 

78 "nsweeps": nSweeps, 

79 }, 

80 } 

81 

82 return description 

83 

84 

85RK_SWEEPERS = { 

86 "BE": rk.BackwardEuler, 

87 "FE": rk.ForwardEuler, 

88 "RK4": rk.RK4, 

89 "DIRK43": rk.DIRK43, 

90 "ESDIRK53": rk.ESDIRK53, 

91 "ESDIRK43": rk.ESDIRK43, 

92} 

93 

94 

95def getParamsRK(method="RK4"): 

96 description = { 

97 # Sweeper and its parameters 

98 "sweeper_class": RK_SWEEPERS[method], 

99 "sweeper_params": {'skip_residual_computation': ('IT_CHECK', 'IT_DOWN', 'IT_UP', 'IT_FINE', 'IT_COARSE')}, 

100 # Step parameters 

101 "step_params": { 

102 "maxiter": 1, 

103 }, 

104 # Level parameters 

105 "level_params": { 

106 "restol": -1, 

107 "nsweeps": 1, 

108 }, 

109 } 

110 

111 return description 

112 

113 

114def setupProblem(name, description, dt, **kwargs): 

115 """Add problem settings to pySDC description parameters""" 

116 

117 # Common newton tolerance and max number of iterations 

118 description["problem_params"] = { 

119 'newton_tol': 1e-8, 

120 'newton_maxiter': 300, 

121 } 

122 # Level parameters 

123 description["level_params"]["dt"] = dt 

124 

125 if name == "VANDERPOL": 

126 description["problem_class"] = vanderpol 

127 description["problem_params"].update( 

128 { 

129 'newton_tol': 1e-12, 

130 'mu': kwargs.get("mu", 10), # vanderpol parameter 

131 'u0': np.array([2.0, 0]), 

132 } 

133 ) 

134 elif name == "LORENZ": 

135 description["problem_class"] = LorenzAttractor 

136 description["problem_params"].update( 

137 { 

138 'newton_tol': 1e-12, 

139 'u0': kwargs.get("u0", (1, 1, 1)), 

140 } 

141 ) 

142 elif name == "PROTHERO-ROBINSON": 

143 description["problem_class"] = ProtheroRobinson 

144 description["problem_params"].update( 

145 { 

146 'newton_tol': 1e-12, 

147 'epsilon': kwargs.get("epsilon", 1e-3), 

148 } 

149 ) 

150 elif name == "PROTHERO-ROBINSON-NL": 

151 description["problem_class"] = ProtheroRobinson 

152 description["problem_params"].update( 

153 { 

154 'newton_tol': 1e-12, 

155 'epsilon': kwargs.get("epsilon", 1e-3), 

156 'nonLinear': True, 

157 } 

158 ) 

159 elif name == "PROTHERO-ROBINSON-A": 

160 description["problem_class"] = ProtheroRobinsonAutonomous 

161 description["problem_params"].update( 

162 { 

163 'newton_tol': 1e-12, 

164 'epsilon': kwargs.get("epsilon", 1e-3), 

165 } 

166 ) 

167 elif name == "PROTHERO-ROBINSON-A-NL": 

168 description["problem_class"] = ProtheroRobinsonAutonomous 

169 description["problem_params"].update( 

170 { 

171 'newton_tol': 1e-12, 

172 'epsilon': kwargs.get("epsilon", 1e-3), 

173 'nonLinear': True, 

174 } 

175 ) 

176 elif name == "KAPS": 

177 description["problem_class"] = Kaps 

178 description["problem_params"].update( 

179 { 

180 'epsilon': kwargs.get("epsilon", 1e-3), 

181 } 

182 ) 

183 elif name == "CHEMREC": 

184 description["problem_class"] = ChemicalReaction3Var 

185 elif name == "ALLEN-CAHN": 

186 periodic = kwargs.get("periodic", False) 

187 description["problem_class"] = allencahn_periodic_fullyimplicit if periodic else allencahn_front_fullyimplicit 

188 description["problem_params"].update( 

189 { 

190 'newton_tol': 1e-8, 

191 'nvars': kwargs.get("nvars", 128 if periodic else 127), 

192 'eps': kwargs.get("epsilon", 0.04), 

193 'stop_at_maxiter': True, 

194 } 

195 ) 

196 elif name == "JACELL": 

197 description["problem_class"] = JacobiElliptic 

198 elif name == "DAHLQUIST": 

199 lambdas = kwargs.get("lambdas", None) 

200 description["problem_class"] = testequation0d 

201 description["problem_params"].update( 

202 { 

203 "lambdas": lambdas, 

204 "u0": 1.0, 

205 } 

206 ) 

207 description["problem_params"].pop("newton_tol") 

208 description["problem_params"].pop("newton_maxiter") 

209 else: 

210 raise NotImplementedError(f"problem {name} not implemented") 

211 

212 

213def solutionSDC(tEnd, nSteps, params, probName, verbose=True, noExcept=False, **kwargs): 

214 dt = tEnd / nSteps 

215 setupProblem(probName, params, dt, **kwargs) 

216 if noExcept: 

217 params["problem_params"]["stop_at_nan"] = False 

218 params["problem_params"]["stop_at_maxiter"] = False 

219 

220 controller = controller_nonMPI(num_procs=1, controller_params={'logger_level': 30}, description=params) 

221 

222 prob = controller.MS[0].levels[0].prob 

223 

224 uInit = prob.u_exact(0) 

225 uTmp = uInit.copy() 

226 

227 uSDC = np.zeros((nSteps + 1, uInit.size), dtype=uInit.dtype) 

228 uSDC[0] = uInit 

229 tVals = np.linspace(0, tEnd, nSteps + 1) 

230 tBeg = time() 

231 if verbose: 

232 print(" -- computing numerical solution with pySDC ...") 

233 warnings.filterwarnings("ignore") 

234 for i in range(nSteps): 

235 uTmp[:] = uSDC[i] 

236 try: 

237 uSDC[i + 1], _ = controller.run(u0=uTmp, t0=tVals[i], Tend=tVals[i + 1]) 

238 except Exception as e: 

239 print(f" -- exception when running controller : {e}") 

240 warnings.resetwarnings() 

241 return None, (0, 0, 0), False 

242 warnings.resetwarnings() 

243 tComp = time() - tBeg 

244 

245 try: 

246 nNewton = prob.work_counters["newton"].niter 

247 except KeyError: 

248 nNewton = 0 

249 nRHS = prob.work_counters["rhs"].niter 

250 if verbose: 

251 print(f" done, newton:{nNewton}, rhs:{nRHS}, tComp:{tComp}") 

252 try: 

253 parallel = controller.MS[0].levels[0].sweep.parallelizable 

254 except AttributeError: # pragma: no cover 

255 parallel = False 

256 

257 return uSDC, (nNewton, nRHS, tComp), parallel 

258 

259 

260def solutionExact(tEnd, nSteps, probName, **kwargs): 

261 """Return the exact solution of the Van-der-Pol problem at tEnd""" 

262 

263 if probName == "VANDERPOL": 

264 mu = kwargs.get('mu', 10) 

265 key = f"{tEnd}_{nSteps}_{mu}" 

266 cacheFile = '_solVanderpolExact.json' 

267 elif probName == "LORENZ": 

268 u0 = kwargs.get('u0', (1, 1, 1)) 

269 key = f"{tEnd}_{nSteps}_{u0}" 

270 cacheFile = '_solLorenzExact.json' 

271 elif probName == "CHEMREC": 

272 key = f"{tEnd}_{nSteps}" 

273 cacheFile = '_solChemicalReactionExact.json' 

274 elif probName == "JACELL": 

275 key = f"{tEnd}_{nSteps}" 

276 cacheFile = '_solJacobiEllipticExact.json' 

277 

278 # Potentially load already computed solution from local cache 

279 try: 

280 with open(f"{PATH}/{cacheFile}", "r") as f: 

281 cache = json.load(f) 

282 if key in cache: 

283 return np.array(cache[key]) 

284 except (FileNotFoundError, json.JSONDecodeError, UnboundLocalError): 

285 cache = {} 

286 

287 # Compute solution 

288 params = getParamsSDC() 

289 dt = tEnd / nSteps 

290 setupProblem(probName, params, dt, **kwargs) 

291 

292 controller = controller_nonMPI(num_procs=1, controller_params={'logger_level': 30}, description=params) 

293 solver = controller.MS[0].levels[0].prob.u_exact 

294 

295 print(" -- computing analytical solution with P.u_exact ...") 

296 tBeg = time() 

297 tVals = np.linspace(0, tEnd, nSteps + 1) 

298 uExact = [solver(0)] 

299 for i in range(nSteps): 

300 try: 

301 uExact.append(solver(tVals[i + 1], uExact[-1], tVals[i])) 

302 except TypeError: 

303 uExact.append(solver(tVals[i + 1])) 

304 uExact = np.array(uExact) 

305 print(f" done in {time()-tBeg:1.2f}s") 

306 

307 try: 

308 # Save solution in local cache 

309 cache[key] = uExact.tolist() 

310 with open(f"{PATH}/{cacheFile}", "w") as f: 

311 json.dump(cache, f) 

312 except UnboundLocalError: 

313 pass 

314 

315 return uExact 

316 

317 

318# Plotting functions 

319def plotStabContour(reVals, imVals, stab, ax=None): 

320 if ax is None: 

321 ax = plt.gca() 

322 ax.contour(reVals, imVals, stab, levels=[1.0], colors='black', linewidths=1) 

323 ax.contourf(reVals, imVals, stab, levels=[1.0, np.inf], colors='gainsboro') 

324 ax.hlines(0, min(reVals), max(reVals), linestyles='--', colors='black', linewidth=0.5) 

325 ax.vlines(0, min(imVals), max(imVals), linestyles='--', colors='black', linewidth=0.5) 

326 ax.set_aspect('equal', 'box') 

327 ax.set_xlabel(r"$Re(z)$", labelpad=0, fontsize=10) 

328 ax.set_ylabel(r"$Im(z)$", labelpad=0, fontsize=10) 

329 return ax