Coverage for pySDC/projects/parallelSDC_reloaded/protheroRobinsonAutonomous_accuracy.py: 100%
58 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
1#!/usr/bin/env python3
2# -*- coding: utf-8 -*-
3"""
4Created on Tue Dec 5 11:02:39 2023
6Script to investigate diagonal SDC on the ProtheroRobinson
7(linear and non-linear) problem, using the autonomous formulation.
9- error VS time-step
10- error VS computation cost
12Note : implementation in progress ...
13"""
14import numpy as np
15import matplotlib.pyplot as plt
17from pySDC.projects.parallelSDC_reloaded.utils import getParamsSDC, getParamsRK, solutionSDC, solutionExact
19# Problem parameters
20tEnd = 2 * np.pi
21nonLinear = True
22epsilon = 0.001
23collUpdate = False
24initSweep = "spread"
26pName = "PROTHERO-ROBINSON-A" + (nonLinear) * "-NL"
29def getError(uNum, uRef):
30 if uNum is None:
31 return np.inf
32 return np.linalg.norm(uRef[:, 0] - uNum[:, 0], np.inf)
35def getCost(counters):
36 nNewton, nRHS, tComp = counters
37 return nNewton + nRHS
40# Base variable parameters
41nNodes = 4
42quadType = 'RADAU-RIGHT'
43nodeType = 'LEGENDRE'
44parEfficiency = 0.8
46qDeltaList = [
47 'MIN-SR-NS',
48 'MIN-SR-S',
49 'MIN-SR-FLEX',
50 "ESDIRK43",
51 'LU',
52 'VDHS',
53 # 'IE', 'LU', 'IEpar', 'PIC',
54 # "MIN3",
55]
56nStepsList = np.array([2, 5, 10, 20, 50, 100, 200])
57# nSweepList = [1, 2, 3, 4]
59# qDeltaList = ['ESDIRK43', 'ESDIRK53', 'VDHS']
60nSweepList = [4]
63symList = ['o', '^', 's', '>', '*', '<', 'p', '>'] * 10
64fig, axs = plt.subplots(1, 2)
66dtVals = tEnd / nStepsList
68i = 0
69for qDelta in qDeltaList:
70 for nSweeps in nSweepList:
71 sym = symList[i]
72 i += 1
74 name = f"{qDelta}({nSweeps})"
75 try:
76 params = getParamsRK(qDelta)
77 name = name.split('(')[0]
78 if nSweeps != nSweepList[0]: # pragma: no cover
79 continue
81 except KeyError:
82 params = getParamsSDC(
83 quadType=quadType,
84 numNodes=nNodes,
85 nodeType=nodeType,
86 qDeltaI=qDelta,
87 nSweeps=nSweeps,
88 collUpdate=collUpdate,
89 initType=initSweep,
90 )
91 print(f'computing for {name} ...')
93 errors = []
94 costs = []
96 for nSteps in nStepsList:
97 print(f' -- nSteps={nSteps} ...')
99 uRef = solutionExact(tEnd, nSteps, pName, epsilon=epsilon)
101 uSDC, counters, parallel = solutionSDC(tEnd, nSteps, params, pName, epsilon=epsilon)
103 err = getError(uSDC, uRef)
104 errors.append(err)
106 cost = getCost(counters)
107 if parallel:
108 cost /= nNodes * parEfficiency
109 costs.append(cost)
111 # error VS dt
112 axs[0].loglog(dtVals, errors, sym + '-', label=name)
113 # error VS cost
114 axs[1].loglog(costs, errors, sym + '-', label=name)
116for i in range(2):
117 axs[i].set(
118 xlabel=r"$\Delta{t}$" if i == 0 else "cost",
119 ylabel=r"$L_\infty$ error",
120 ylim=(1e-12, 1e3),
121 )
122 axs[i].legend()
123 axs[i].grid()
125fig.set_size_inches(12, 5)
126fig.tight_layout()