Coverage for pySDC/projects/DAE/sweepers/fullyImplicitDAE.py: 97%
77 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-09 14:59 +0000
1import numpy as np
2from scipy import optimize
4from pySDC.core.errors import ParameterError
5from pySDC.implementations.sweeper_classes.generic_implicit import generic_implicit
8class FullyImplicitDAE(generic_implicit):
9 r"""
10 Custom sweeper class to implement the fully-implicit SDC for solving DAEs. It solves fully-implicit DAE problems
11 of the form
13 .. math::
14 F(t, u, u') = 0.
16 It solves a collocation problem of the form
18 .. math::
19 F(\tau, \vec{U}_0 + \Delta t (\mathbf{Q} \otimes \mathbf{I}_n) \vec{U}, \vec{U}) = 0,
21 where
23 - :math:`\tau=(\tau_1,..,\tau_M) in \mathbb{R}^M` the vector of collocation nodes,
24 - :math:`\vec{U}_0 = (u_0,..,u_0) \in \mathbb{R}^{Mn}` the vector of initial condition spread to each node,
25 - spectral integration matrix :math:`\mathbf{Q} \in \mathbb{R}^{M \times M}`,
26 - :math:`\vec{U}=(U_1,..,U_M) \in \mathbb{R}^{Mn}` the vector of unknown derivatives
27 :math:`U_m \approx U(\tau_m) = u'(\tau_m) \in \mathbb{R}^n`,
28 - and identity matrix :math:`\mathbf{I}_n \in \mathbb{R}^{n \times n}`.
30 The construction of this sweeper is based on the concepts outlined in [1]_.
32 Parameters
33 ----------
34 params : dict
35 Parameters passed to the sweeper.
37 Attributes
38 ----------
39 QI : np.2darray
40 Implicit Euler integration matrix.
42 References
43 ----------
44 .. [1] J. Huang, J. Jun, M. L. Minion. Arbitrary order Krylov deferred correction methods for differential algebraic equation.
45 J. Comput. Phys. Vol. 221 No. 2 (2007).
46 """
48 def __init__(self, params):
49 """Initialization routine"""
51 if 'QI' not in params:
52 params['QI'] = 'IE'
54 # call parent's initialization routine
55 super().__init__(params)
57 msg = f"Quadrature type {self.params.quad_type} is not implemented yet. Use 'RADAU-RIGHT' instead!"
58 if self.coll.left_is_node:
59 raise ParameterError(msg)
61 self.QI = self.get_Qdelta_implicit(qd_type=self.params.QI)
63 def update_nodes(self):
64 r"""
65 Updates values of ``u`` and ``f`` at collocation nodes. This correspond to a single iteration of the
66 preconditioned Richardson iteration in **"ordinary"** SDC.
67 """
69 L = self.level
70 P = L.prob
72 # only if the level has been touched before
73 assert L.status.unlocked
75 M = self.coll.num_nodes
77 # get QU^k where U = u'
78 integral = self.integrate()
79 # build the rest of the known solution u_0 + del_t(Q - Q_del)U_k
80 for m in range(1, M + 1):
81 for j in range(1, M + 1):
82 integral[m - 1] -= L.dt * self.QI[m, j] * L.f[j]
83 integral[m - 1] += L.u[0]
85 # do the sweep
86 for m in range(1, M + 1):
87 # add the known components from current sweep del_t*Q_del*U_k+1
88 u_approx = P.dtype_u(integral[m - 1])
89 for j in range(1, m):
90 u_approx += L.dt * self.QI[m, j] * L.f[j]
92 # update gradient (recall L.f is being used to store the gradient)
93 L.f[m] = P.solve_system(
94 self.F, u_approx, L.dt * self.QI[m, m], L.f[m], L.time + L.dt * self.coll.nodes[m - 1]
95 )
97 # Update solution approximation
98 integral = self.integrate()
99 for m in range(M):
100 L.u[m + 1] = L.u[0] + integral[m]
102 # indicate presence of new values at this level
103 L.status.updated = True
105 return None
107 def predict(self):
108 r"""
109 Predictor to fill values at nodes before first sweep. It can decide whether the
111 - initial condition is spread to each node ('initial_guess' = 'spread'),
112 - zero values are spread to each node ('initial_guess' = 'zero'),
113 - or random values are spread to each collocation node ('initial_guess' = 'random').
115 Default prediction for the sweepers, only copies the values to all collocation nodes. This function
116 overrides the base implementation by always initialising ``level.f`` to zero. This is necessary since
117 ``level.f`` stores the solution derivative in the fully implicit case, which is not initially known.
118 """
119 # get current level and problem description
120 L = self.level
121 P = L.prob
122 # set initial guess for gradient to zero
123 L.f[0] = P.dtype_f(init=P.init, val=0.0)
124 for m in range(1, self.coll.num_nodes + 1):
125 # copy u[0] to all collocation nodes and set f (the gradient) to zero
126 if self.params.initial_guess == 'spread':
127 L.u[m] = P.dtype_u(L.u[0])
128 L.f[m] = P.dtype_f(init=P.init, val=0.0)
129 elif self.params.initial_guess == 'zero':
130 L.u[m] = P.dtype_u(init=P.init, val=0.0)
131 L.f[m] = P.dtype_f(init=P.init, val=0.0)
132 # start with random initial guess
133 elif self.params.initial_guess == 'random':
134 L.u[m] = P.dtype_u(init=P.init, val=np.random.rand(1)[0])
135 L.f[m] = P.dtype_f(init=P.init, val=np.random.rand(1)[0])
136 else:
137 raise ParameterError(f'initial_guess option {self.params.initial_guess} not implemented')
139 # indicate that this level is now ready for sweeps
140 L.status.unlocked = True
141 L.status.updated = True
143 def compute_residual(self, stage=None):
144 r"""
145 Uses the absolute value of the DAE system
147 .. math::
148 ||F(t, u, u')||
150 for computing the residual in a chosen norm.
152 Parameters
153 ----------
154 stage : str, optional
155 The current stage of the step the level belongs to.
156 """
158 # get current level and problem description
159 L = self.level
160 P = L.prob
162 # Check if we want to skip the residual computation to gain performance
163 # Keep in mind that skipping any residual computation is likely to give incorrect outputs of the residual!
164 if stage in self.params.skip_residual_computation:
165 L.status.residual = 0.0 if L.status.residual is None else L.status.residual
166 return None
168 # compute the residual for each node
169 res_norm = []
170 for m in range(self.coll.num_nodes):
171 # use abs function from data type here
172 res_norm.append(abs(P.eval_f(L.u[m + 1], L.f[m + 1], L.time + L.dt * self.coll.nodes[m])))
174 # find maximal residual over the nodes
175 if L.params.residual_type == 'full_abs':
176 L.status.residual = max(res_norm)
177 elif L.params.residual_type == 'last_abs':
178 L.status.residual = res_norm[-1]
179 elif L.params.residual_type == 'full_rel':
180 L.status.residual = max(res_norm) / abs(L.u[0])
181 elif L.params.residual_type == 'last_rel':
182 L.status.residual = res_norm[-1] / abs(L.u[0])
183 else:
184 raise ParameterError(
185 f'residual_type = {L.params.residual_type} not implemented, choose '
186 f'full_abs, last_abs, full_rel or last_rel instead'
187 )
189 # indicate that the residual has seen the new values
190 L.status.updated = False
192 return None
194 def compute_end_point(self):
195 """
196 Compute u at the right point of the interval.
198 The value uend computed here is a full evaluation of the Picard formulation unless do_full_update==False
200 Returns:
201 None
202 """
204 if not self.coll.right_is_node or self.params.do_coll_update:
205 raise NotImplementedError()
207 super().compute_end_point()
209 @staticmethod
210 def F(du, P, factor, u_approx, t):
211 r"""
212 This function builds the implicit system to be solved for a DAE of the form
214 .. math::
215 0 = F(u, u', t)
217 Applying SDC yields the (non)-linear system to be solved
219 .. math::
220 0 = F(u_0 + \sum_{j=1}^M (q_{mj}-\tilde{q}_{mj}) U_j
221 + \sum_{j=1}^m \tilde{q}_{mj} U_j, U_m, \tau_m),
223 which is solved for the derivative of u.
225 Note
226 ----
227 This function is also used for Runge-Kutta methods since only
228 the argument ``u_approx`` differs. However, the implicit system to be solved
229 is the same.
231 Parameters
232 ----------
233 du : dtype_u
234 Unknowns of the system (derivative of solution u).
235 P : pySDC.projects.DAE.misc.problemDAE.ProblemDAE
236 Problem class.
237 factor : float
238 Abbrev. for the node-to-node stepsize.
239 u_approx : dtype_u
240 Approximation to numerical solution :math:`u`.
241 t : float
242 Current time :math:`t`.
244 Returns
245 -------
246 sys : dtype_f
247 System to be solved.
248 """
250 local_du_approx = P.dtype_f(du)
252 # build parameters to pass to implicit function
253 local_u_approx = P.dtype_f(u_approx)
255 # note that derivatives of algebraic variables are taken into account here too
256 # these do not directly affect the output of eval_f but rather indirectly via QI
257 local_u_approx += factor * local_du_approx
259 sys = P.eval_f(local_u_approx, local_du_approx, t)
260 return sys