Coverage for pySDC/tutorial/step_7/A_pySDC_with_FEniCS.py: 100%
105 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-19 09:13 +0000
1from pathlib import Path
2import numpy as np
4from pySDC.helpers.stats_helper import get_sorted
6from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI
7from pySDC.implementations.problem_classes.HeatEquation_1D_FEniCS_matrix_forced import (
8 fenics_heat_mass,
9 fenics_heat,
10 fenics_heat_mass_timebc,
11)
12from pySDC.implementations.sweeper_classes.imex_1st_order_mass import imex_1st_order_mass, imex_1st_order
13from pySDC.implementations.transfer_classes.TransferFenicsMesh import mesh_to_mesh_fenics
16def setup(t0=None, ml=None):
17 """
18 Helper routine to set up parameters
20 Args:
21 t0 (float): initial time
22 ml (bool): use single or multiple levels
24 Returns:
25 description and controller_params parameter dictionaries
26 """
28 # initialize level parameters
29 level_params = dict()
30 level_params['restol'] = 5e-10
31 level_params['dt'] = 0.2
33 # initialize step parameters
34 step_params = dict()
35 step_params['maxiter'] = 20
37 # initialize sweeper parameters
38 sweeper_params = dict()
39 sweeper_params['quad_type'] = 'RADAU-RIGHT'
40 if ml:
41 # Note that coarsening in the nodes actually HELPS MLSDC to converge (M=1 is exact on the coarse level)
42 sweeper_params['num_nodes'] = [3, 1]
43 else:
44 sweeper_params['num_nodes'] = [3]
46 problem_params = dict()
47 problem_params['nu'] = 0.1
48 problem_params['t0'] = t0 # ugly, but necessary to set up this ProblemClass
49 problem_params['c_nvars'] = [128]
50 problem_params['family'] = 'CG'
51 problem_params['c'] = 1.0
52 if ml:
53 # We can do rather aggressive coarsening here. As long as we have 1 node on the coarse level, all is "well" (ie.
54 # MLSDC does not take more iterations than SDC, but also not less). If we just coarsen in the refinement (and
55 # not in the nodes and order, the mass inverse approach is way better, ie. halves the number of iterations!
56 problem_params['order'] = [4, 1]
57 problem_params['refinements'] = [1, 0]
58 else:
59 problem_params['order'] = [4]
60 problem_params['refinements'] = [1]
62 # initialize controller parameters
63 controller_params = dict()
64 controller_params['logger_level'] = 30
66 base_transfer_params = dict()
67 base_transfer_params['finter'] = True
69 # Fill description dictionary for easy hierarchy creation
70 description = dict()
71 description['problem_class'] = None
72 description['problem_params'] = problem_params
73 description['sweeper_class'] = None
74 description['sweeper_params'] = sweeper_params
75 description['level_params'] = level_params
76 description['step_params'] = step_params
77 description['space_transfer_class'] = mesh_to_mesh_fenics
78 description['base_transfer_params'] = base_transfer_params
80 return description, controller_params
83def run_variants(variant=None, ml=None, num_procs=None):
84 """
85 Main routine to run the different implementations of the heat equation with FEniCS
87 Args:
88 variant (str): specifies the variant
89 ml (bool): use single or multiple levels
90 num_procs (int): number of processors in time
91 """
92 Tend = 1.0
93 t0 = 0.0
95 description, controller_params = setup(t0=t0, ml=ml)
97 if variant == 'mass':
98 # Note that we need to reduce the tolerance for the residual here, since otherwise the error will be too high
99 description['level_params']['restol'] /= 500
100 description['problem_class'] = fenics_heat_mass
101 description['sweeper_class'] = imex_1st_order_mass
102 elif variant == 'mass_inv':
103 description['problem_class'] = fenics_heat
104 description['sweeper_class'] = imex_1st_order
105 elif variant == 'mass_timebc':
106 # Can increase the tolerance here, errors are higher anyway
107 description['level_params']['restol'] *= 20
108 description['problem_class'] = fenics_heat_mass_timebc
109 description['sweeper_class'] = imex_1st_order_mass
110 else:
111 raise NotImplementedError('Variant %s is not implemented' % variant)
113 # quickly generate block of steps
114 controller = controller_nonMPI(num_procs=num_procs, controller_params=controller_params, description=description)
116 # get initial values on finest level
117 P = controller.MS[0].levels[0].prob
118 uinit = P.u_exact(0.0)
120 # call main function to get things done...
121 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend)
123 # compute exact solution and compare
124 uex = P.u_exact(Tend)
125 err = abs(uex - uend) / abs(uex)
127 Path("data").mkdir(parents=True, exist_ok=True)
128 f = open('data/step_7_A_out.txt', 'a')
130 out = f'Variant {variant} with ml={ml} and num_procs={num_procs} -- error at time {Tend}: {err}'
131 f.write(out + '\n')
132 print(out)
134 # filter statistics by type (number of iterations)
135 iter_counts = get_sorted(stats, type='niter', sortby='time')
137 niters = np.array([item[1] for item in iter_counts])
138 out = ' Mean number of iterations: %4.2f' % np.mean(niters)
139 f.write(out + '\n')
140 print(out)
141 out = ' Range of values for number of iterations: %2i ' % np.ptp(niters)
142 f.write(out + '\n')
143 print(out)
144 out = ' Position of max/min number of iterations: %2i -- %2i' % (int(np.argmax(niters)), int(np.argmin(niters)))
145 f.write(out + '\n')
146 print(out)
147 out = ' Std and var for number of iterations: %4.2f -- %4.2f' % (float(np.std(niters)), float(np.var(niters)))
148 f.write(out + '\n')
149 print(out)
151 timing = get_sorted(stats, type='timing_run', sortby='time')
152 out = f'Time to solution: {timing[0][1]:6.4f} sec.'
153 f.write(out + '\n')
154 print(out)
156 if num_procs == 1:
157 assert np.mean(niters) <= 6.0, 'Mean number of iterations is too high, got %s' % np.mean(niters)
158 if variant == 'mass' or variant == 'mass_inv':
159 assert err <= 1.14e-08, 'Error is too high, got %s' % err
160 else:
161 assert err <= 3.25e-07, 'Error is too high, got %s' % err
162 else:
163 assert np.mean(niters) <= 11.6, 'Mean number of iterations is too high, got %s' % np.mean(niters)
164 assert err <= 1.14e-08, 'Error is too high, got %s' % err
166 f.write('\n')
167 print()
168 f.close()
171def main():
172 run_variants(variant='mass_inv', ml=False, num_procs=1)
173 run_variants(variant='mass', ml=False, num_procs=1)
174 run_variants(variant='mass_timebc', ml=False, num_procs=1)
175 run_variants(variant='mass_inv', ml=True, num_procs=1)
176 run_variants(variant='mass', ml=True, num_procs=1)
177 run_variants(variant='mass_timebc', ml=True, num_procs=1)
178 run_variants(variant='mass_inv', ml=True, num_procs=5)
180 # WARNING: all other variants do NOT work, either because of FEniCS restrictions (weak forms with different meshes
181 # will not work together) or because of inconsistent use of the mass matrix (locality condition for the tau
182 # correction is not satisfied, mass matrix does not permute with restriction).
183 # run_pfasst_variants(variant='mass', ml=True, num_procs=5)
186if __name__ == "__main__":
187 main()