Coverage for pySDC/projects/DAE/misc/problemDAE.py: 100%
22 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-09-20 17:10 +0000
1import numpy as np
2from scipy.optimize import root
4from pySDC.core.problem import Problem, WorkCounter
5from pySDC.projects.DAE.misc.meshDAE import MeshDAE
8class ProblemDAE(Problem):
9 r"""
10 This class implements a generic DAE class and illustrates the interface class for DAE problems.
11 It ensures that all parameters are passed that are needed by DAE sweepers.
13 Parameters
14 ----------
15 nvars : int
16 Number of unknowns of the problem class.
17 newton_tol : float
18 Tolerance for the nonlinear solver.
20 Attributes
21 ----------
22 work_counters : WorkCounter
23 Counts the work, here the number of function calls during the nonlinear solve is logged and stored
24 in work_counters['newton']. The number of each function class of the right-hand side is then stored
25 in work_counters['rhs']
26 """
28 dtype_u = MeshDAE
29 dtype_f = MeshDAE
31 def __init__(self, nvars, newton_tol):
32 """Initialization routine"""
33 super().__init__((nvars, None, np.dtype('float64')))
34 self._makeAttributeAndRegister('nvars', 'newton_tol', localVars=locals(), readOnly=True)
36 self.work_counters['newton'] = WorkCounter()
37 self.work_counters['rhs'] = WorkCounter()
39 def solve_system(self, impl_sys, u_approx, factor, u0, t):
40 r"""
41 Solver for nonlinear implicit system (defined in sweeper).
43 Parameters
44 ----------
45 impl_sys : callable
46 Implicit system to be solved.
47 u_approx : dtype_u
48 Approximation of solution :math:`u` which is needed to solve
49 the implicit system.
50 factor : float
51 Abbrev. for the node-to-node stepsize.
52 u0 : dtype_u
53 Initial guess for solver.
54 t : float
55 Current time :math:`t`.
57 Returns
58 -------
59 me : dtype_u
60 Numerical solution.
61 """
62 me = self.dtype_u(self.init)
64 def implSysFlatten(unknowns, **kwargs):
65 sys = impl_sys(unknowns.reshape(me.shape).view(type(u0)), self, factor, u_approx, t, **kwargs)
66 return sys.flatten()
68 opt = root(
69 implSysFlatten,
70 u0,
71 method='hybr',
72 tol=self.newton_tol,
73 )
74 me[:] = opt.x.reshape(me.shape)
75 self.work_counters['newton'].niter += opt.nfev
76 return me
78 def du_exact(self, t):
79 r"""
80 Routine for the derivative of the exact solution at time :math:`t \leq 1`.
81 For this problem, the exact solution is piecewise.
83 Parameters
84 ----------
85 t : float
86 Time of the exact solution.
88 Returns
89 -------
90 me : dtype_u
91 Derivative of exact solution.
92 """
94 raise NotImplementedError('ERROR: problem has to implement du_exact(self, t)!')