Coverage for pySDC/projects/soft_failure/generate_statistics.py: 75%

199 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-09 14:59 +0000

1from __future__ import division 

2 

3import dill 

4import numpy as np 

5 

6from pySDC.helpers.stats_helper import get_sorted 

7 

8from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI 

9from pySDC.implementations.problem_classes.GeneralizedFisher_1D_FD_implicit import generalized_fisher 

10from pySDC.implementations.problem_classes.HeatEquation_ND_FD import heatNd_unforced 

11from pySDC.implementations.problem_classes.Van_der_Pol_implicit import vanderpol 

12from pySDC.projects.soft_failure.FaultHooks import fault_hook 

13from pySDC.projects.soft_failure.implicit_sweeper_faults import implicit_sweeper_faults 

14from pySDC.projects.soft_failure.visualization_helper import ( 

15 show_residual_across_simulation, 

16 show_min_max_residual_across_simulation, 

17 show_iter_hist, 

18) 

19 

20 

21def diffusion_setup(): 

22 """ 

23 Setup routine for diffusion test 

24 """ 

25 # initialize level parameters 

26 level_params = dict() 

27 level_params['restol'] = 1e-10 

28 level_params['dt'] = 0.25 

29 level_params['nsweeps'] = 1 

30 

31 # initialize sweeper parameters 

32 sweeper_params = dict() 

33 sweeper_params['quad_type'] = 'RADAU-RIGHT' 

34 sweeper_params['num_nodes'] = 3 

35 sweeper_params['QI'] = 'LU' # For the IMEX sweeper, the LU-trick can be activated for the implicit part 

36 sweeper_params['initial_guess'] = 'spread' 

37 sweeper_params['detector_threshold'] = 1e-10 

38 

39 # initialize problem parameters 

40 problem_params = dict() 

41 problem_params['nu'] = 0.1 # diffusion coefficient 

42 problem_params['freq'] = 4 # frequency for the test value 

43 problem_params['nvars'] = 127 # number of degrees of freedom for each level 

44 problem_params['bc'] = 'dirichlet-zero' # boundary conditions 

45 

46 # initialize step parameters 

47 step_params = dict() 

48 step_params['maxiter'] = 50 

49 

50 # initialize controller parameters 

51 controller_params = dict() 

52 controller_params['logger_level'] = 30 

53 

54 # fill description dictionary for easy step instantiation 

55 description = dict() 

56 description['problem_class'] = heatNd_unforced # pass problem class 

57 description['problem_params'] = problem_params # pass problem parameters 

58 description['sweeper_class'] = implicit_sweeper_faults # pass sweeper 

59 description['sweeper_params'] = sweeper_params # pass sweeper parameters 

60 description['level_params'] = level_params # pass level parameters 

61 description['step_params'] = step_params # pass step parameters 

62 

63 return description, controller_params 

64 

65 

66def reaction_setup(): 

67 """ 

68 Setup routine for diffusion-reaction test with Newton solver 

69 """ 

70 # initialize level parameters 

71 level_params = dict() 

72 level_params['restol'] = 1e-10 

73 level_params['dt'] = 0.25 

74 level_params['nsweeps'] = 1 

75 

76 # initialize sweeper parameters 

77 sweeper_params = dict() 

78 sweeper_params['quad_type'] = 'RADAU-RIGHT' 

79 sweeper_params['num_nodes'] = 3 

80 sweeper_params['QI'] = 'LU' # For the IMEX sweeper, the LU-trick can be activated for the implicit part 

81 sweeper_params['initial_guess'] = 'spread' 

82 sweeper_params['detector_threshold'] = 1e-10 

83 

84 # initialize problem parameters 

85 problem_params = dict() 

86 problem_params['nu'] = 1.0 

87 problem_params['lambda0'] = 2.0 

88 problem_params['newton_maxiter'] = 20 

89 problem_params['newton_tol'] = 1e-10 

90 problem_params['stop_at_nan'] = False 

91 problem_params['interval'] = (-5, 5) 

92 problem_params['nvars'] = 127 

93 

94 # initialize step parameters 

95 step_params = dict() 

96 step_params['maxiter'] = 50 

97 

98 # initialize controller parameters 

99 controller_params = dict() 

100 controller_params['logger_level'] = 30 

101 

102 # fill description dictionary for easy step instantiation 

103 description = dict() 

104 description['problem_class'] = generalized_fisher # pass problem class 

105 description['problem_params'] = problem_params # pass problem parameters 

106 description['sweeper_class'] = implicit_sweeper_faults # pass sweeper 

107 description['sweeper_params'] = sweeper_params # pass sweeper parameters 

108 description['level_params'] = level_params # pass level parameters 

109 description['step_params'] = step_params # pass step parameters 

110 

111 return description, controller_params 

112 

113 

114def vanderpol_setup(): 

115 """ 

116 Van der Pol's oscillator 

117 """ 

118 # initialize level parameters 

119 level_params = dict() 

120 level_params['restol'] = 1e-10 

121 level_params['dt'] = 0.25 

122 level_params['nsweeps'] = 1 

123 

124 # initialize sweeper parameters 

125 sweeper_params = dict() 

126 sweeper_params['quad_type'] = 'RADAU-RIGHT' 

127 sweeper_params['num_nodes'] = 3 

128 sweeper_params['QI'] = 'LU' 

129 sweeper_params['detector_threshold'] = 1e-10 

130 

131 # initialize problem parameters 

132 problem_params = dict() 

133 problem_params['newton_tol'] = 1e-10 

134 problem_params['newton_maxiter'] = 50 

135 problem_params['stop_at_nan'] = False 

136 problem_params['mu'] = 18 

137 problem_params['u0'] = (1.0, 0.0) 

138 

139 # initialize step parameters 

140 step_params = dict() 

141 step_params['maxiter'] = 50 

142 

143 # initialize controller parameters 

144 controller_params = dict() 

145 controller_params['logger_level'] = 30 

146 

147 # Fill description dictionary for easy hierarchy creation 

148 description = dict() 

149 description['problem_class'] = vanderpol 

150 description['problem_params'] = problem_params 

151 description['sweeper_class'] = implicit_sweeper_faults 

152 description['sweeper_params'] = sweeper_params 

153 description['level_params'] = level_params 

154 description['step_params'] = step_params 

155 

156 return description, controller_params 

157 

158 

159def run_clean_simulations(type=None): 

160 """ 

161 A simple code to run fault-free simulations 

162 

163 Args: 

164 type (str): setup type 

165 f: file handler 

166 """ 

167 

168 if type == 'diffusion': 

169 description, controller_params = diffusion_setup() 

170 elif type == 'reaction': 

171 description, controller_params = reaction_setup() 

172 elif type == 'vanderpol': 

173 description, controller_params = vanderpol_setup() 

174 else: 

175 raise ValueError('No valid setup type provided, aborting..') 

176 

177 # set time parameters 

178 t0 = 0.0 

179 Tend = description['level_params']['dt'] 

180 

181 # instantiate controller 

182 controller = controller_nonMPI(num_procs=1, controller_params=controller_params, description=description) 

183 

184 # get initial values on finest level 

185 P = controller.MS[0].levels[0].prob 

186 uinit = P.u_exact(t0) 

187 

188 # this is where the iteration is happening 

189 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend) 

190 

191 # filter statistics by type (number of iterations) 

192 iter_counts = get_sorted(stats, type='niter', sortby='time') 

193 

194 # print('This clean run took %s iterations!' % iter_counts[0][1]) 

195 

196 return iter_counts[0][1] 

197 

198 

199def run_faulty_simulations(type=None, niters=None, cwd=''): 

200 """ 

201 A simple program to run faulty simulations 

202 

203 Args: 

204 type (str): setup type 

205 niters (int): number of iterations in clean run 

206 f: file handler 

207 cwd (str): current workind directory 

208 """ 

209 

210 if type == 'diffusion': 

211 description, controller_params = diffusion_setup() 

212 elif type == 'reaction': 

213 description, controller_params = reaction_setup() 

214 elif type == 'vanderpol': 

215 description, controller_params = vanderpol_setup() 

216 else: 

217 raise ValueError('No valid setup type provided, aborting..') 

218 

219 # set time parameters 

220 t0 = 0.0 

221 Tend = description['level_params']['dt'] 

222 

223 filehandle_injections = open(cwd + 'data/dump_injections_' + type + '.txt', 'w') 

224 

225 controller_params['hook_class'] = fault_hook 

226 description['sweeper_params']['allow_fault_correction'] = True 

227 description['sweeper_params']['dump_injections_filehandle'] = filehandle_injections 

228 description['sweeper_params']['niters'] = niters 

229 

230 # instantiate controller 

231 controller = controller_nonMPI(num_procs=1, controller_params=controller_params, description=description) 

232 

233 # get initial values on finest level 

234 P = controller.MS[0].levels[0].prob 

235 uinit = P.u_exact(t0) 

236 

237 # number of runs 

238 nruns = 500 

239 results = [] 

240 for _ in range(nruns): 

241 # this is where the iteration is happening 

242 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend) 

243 

244 results.append(stats) 

245 

246 filehandle_injections.close() 

247 

248 dill.dump(results, open(cwd + "data/results_" + type + ".pkl", "wb")) 

249 

250 

251def process_statistics(type=None, cwd=''): 

252 results = dill.load(open(cwd + "data/results_" + type + ".pkl", "rb")) 

253 

254 # get minimal length of residual vector 

255 minlen = 1000 

256 nruns = 0 

257 for stats in results: 

258 residuals = get_sorted(stats, type='residual_post_iteration', sortby='iter') 

259 minlen = min(minlen, len(residuals)) 

260 nruns += 1 

261 

262 # initialize minimal residual vector 

263 minres = np.zeros(minlen) 

264 minres[:] = 1000 

265 # initialize maximal residual vector 

266 maxres = np.zeros(minlen) 

267 # initialize mean residual vector 

268 meanres = np.zeros(minlen) 

269 # initialize median residual vector 

270 medianres = np.zeros(minlen) 

271 # initialize helper list 

272 median_list = [[] for _ in range(minlen)] 

273 

274 for stats in results: 

275 # Some black magic to extract fault stats out of monstrous stats object 

276 # fault_stats = get_sorted(stats, type='fault_stats', sortby='type')[0][1] 

277 # Some black magic to extract residuals dependent on iteration out of monstrous stats object 

278 residuals_iter = get_sorted(stats, type='residual_post_iteration', sortby='iter') 

279 # extract residuals ouf of residuals_iter 

280 residuals = np.array([item[1] for item in residuals_iter]) 

281 

282 # calculate minimal, maximal, mean residual vectors 

283 for i in range(minlen): 

284 if np.isnan(residuals[i]) or np.isinf(residuals[i]): 

285 residuals[i] = 1000 

286 minres[i] = min(minres[i], residuals[i]) 

287 maxres[i] = max(maxres[i], residuals[i]) 

288 meanres[i] += residuals[i] 

289 median_list[i].append(residuals[i]) 

290 

291 # Example output of what we now can do 

292 # print(fault_stats.nfaults_injected_u, fault_stats.nfaults_injected_f, fault_stats.nfaults_detected, 

293 # fault_stats.nfalse_positives, fault_stats.nfalse_positives_in_correction, 

294 # fault_stats.nfaults_missed, fault_stats.nclean_steps) 

295 

296 # print() 

297 

298 # call helper routine to produce residual plot 

299 # fname = 'residuals.png' 

300 fname = cwd + 'data/' + type + '_' + str(nruns) + '_' + 'runs' + '_' + 'residuals.png' 

301 show_residual_across_simulation(stats=stats, fname=fname) 

302 meanres /= nruns 

303 # print(minres) 

304 # print(maxres) 

305 # print(meanres) 

306 # calculate median residual vector 

307 for i in range(minlen): 

308 medianres[i] = np.median(median_list[i]) 

309 # print(median_list) 

310 # print(medianres) 

311 # call helper routine to produce residual plot of minres, maxres, meanres and medianres 

312 # fname = 'min_max_residuals.png' 

313 fname = cwd + 'data/' + type + '_' + str(nruns) + '_' + 'runs' + '_' + 'min_max_residuals.png' 

314 show_min_max_residual_across_simulation( 

315 fname=fname, minres=minres, maxres=maxres, meanres=meanres, medianres=medianres, maxiter=minlen 

316 ) 

317 

318 # calculate maximum number of iterations per test run 

319 maxiter = [] 

320 for stats in results: 

321 residuals = get_sorted(stats, type='residual_post_iteration', sortby='iter') 

322 maxiters = max(np.array([item[0] for item in residuals])) 

323 maxiter.append(maxiters) 

324 # print(maxiter) 

325 # call helper routine to produce histogram of maxiter 

326 # fname = 'iter_hist.png' 

327 fname = cwd + 'data/' + type + '_' + str(nruns) + '_' + 'runs' + '_' + 'iter_hist.png' 

328 show_iter_hist(fname=fname, maxiter=maxiter, nruns=nruns) 

329 

330 # initialize sum of nfaults_detected 

331 nfd = 0 

332 # initialize sum of nfalse_positives 

333 nfp = 0 

334 # initialize sum of nfaults_missed 

335 nfm = 0 

336 # initialize sum of nfalse_positives_in_correction 

337 nfpc = 0 

338 # calculate sum of nfaults_detected, sum of nfalse_positives, sum of nfaults_missed 

339 for stats in results: 

340 # Some black magic to extract fault stats out of monstrous stats object 

341 fault_stats = get_sorted(stats, type='fault_stats', sortby='type')[0][1] 

342 nfd += fault_stats.nfaults_detected 

343 nfp += fault_stats.nfalse_positives 

344 nfm += fault_stats.nfaults_missed 

345 nfpc += fault_stats.nfalse_positives_in_correction 

346 

347 g = open(cwd + 'data/' + type + '_' + str(nruns) + '_' + 'runs' + '_' + 'Statistics.txt', 'w') 

348 out = 'Type: ' + type + ' ' + str(nruns) + ' runs' 

349 g.write(out + '\n') 

350 # detector metrics (Sloan, Kumar, Bronevetsky 2012) 

351 # nfaults_detected 

352 out = 'true positives: ' + str(nfd) 

353 g.write(out + '\n') 

354 # nfaults_positives 

355 out = 'false positives: ' + str(nfp) 

356 g.write(out + '\n') 

357 # nfaults_missed 

358 out = 'false negatives: ' + str(nfm) 

359 g.write(out + '\n') 

360 # nfalse_positives_in_correction 

361 out = 'false positives in correction: ' + str(nfpc) 

362 g.write(out + '\n') 

363 # F-Score 

364 f_score = 2 * nfd / (2 * nfd + nfp + nfm) 

365 out = 'F-Score: ' + str(f_score) 

366 g.write(out + '\n') 

367 # false positive rate (FPR) 

368 fpr = nfp / (nfd + nfp) 

369 out = 'False positive rate: ' + str(fpr) 

370 g.write(out + '\n') 

371 # true positive rate (TPR) 

372 tpr = nfd / (nfd + nfp) 

373 out = 'True positive rate: ' + str(tpr) 

374 g.write(out + '\n') 

375 g.close() 

376 

377 

378def main(): 

379 # type = 'diffusion' 

380 # niters = run_clean_simulations(type=type) 

381 # run_faulty_simulations(type=type, niters=niters) 

382 # process_statistics(type=type) 

383 

384 # type = 'reaction' 

385 # niters = run_clean_simulations(type=type) 

386 # run_faulty_simulations(type=type, niters=niters) 

387 # process_statistics(type=type) 

388 

389 type = 'vanderpol' 

390 niters = run_clean_simulations(type=type) 

391 run_faulty_simulations(type=type, niters=niters) 

392 process_statistics(type=type) 

393 

394 

395if __name__ == "__main__": 

396 main()