Coverage for pySDC/projects/Hamiltonian/solar_system.py: 96%

157 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-09-19 09:13 +0000

1import os 

2from collections import defaultdict 

3from mpl_toolkits.mplot3d import Axes3D 

4 

5import dill 

6import numpy as np 

7 

8import pySDC.helpers.plot_helper as plt_helper 

9from pySDC.helpers.stats_helper import get_sorted, filter_stats 

10 

11from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI 

12from pySDC.implementations.problem_classes.FullSolarSystem import full_solar_system 

13from pySDC.implementations.problem_classes.OuterSolarSystem import outer_solar_system 

14from pySDC.implementations.sweeper_classes.verlet import verlet 

15from pySDC.implementations.transfer_classes.TransferParticles_NoCoarse import particles_to_particles 

16from pySDC.projects.Hamiltonian.hamiltonian_output import hamiltonian_output 

17 

18 

19def setup_outer_solar_system(): 

20 """ 

21 Helper routine for setting up everything for the outer solar system problem 

22 

23 Returns: 

24 description (dict): description of the controller 

25 controller_params (dict): controller parameters 

26 """ 

27 

28 # initialize level parameters 

29 level_params = dict() 

30 level_params['restol'] = 1e-10 

31 level_params['dt'] = 100.0 

32 

33 # initialize sweeper parameters 

34 sweeper_params = dict() 

35 sweeper_params['quad_type'] = 'LOBATTO' 

36 sweeper_params['num_nodes'] = [5, 3] 

37 sweeper_params['initial_guess'] = 'spread' 

38 

39 # initialize problem parameters for the Penning trap 

40 problem_params = dict() 

41 problem_params['sun_only'] = [False, True] 

42 

43 # initialize step parameters 

44 step_params = dict() 

45 step_params['maxiter'] = 50 

46 

47 # initialize controller parameters 

48 controller_params = dict() 

49 controller_params['hook_class'] = hamiltonian_output # specialized hook class for more statistics and output 

50 controller_params['logger_level'] = 30 

51 

52 # Fill description dictionary for easy hierarchy creation 

53 description = dict() 

54 description['problem_class'] = outer_solar_system 

55 description['problem_params'] = problem_params 

56 description['sweeper_class'] = verlet 

57 description['sweeper_params'] = sweeper_params 

58 description['level_params'] = level_params 

59 description['step_params'] = step_params 

60 description['space_transfer_class'] = particles_to_particles 

61 

62 return description, controller_params 

63 

64 

65def setup_full_solar_system(): 

66 """ 

67 Helper routine for setting up everything for the full solar system problem 

68 

69 Returns: 

70 description (dict): description of the controller 

71 controller_params (dict): controller parameters 

72 """ 

73 

74 # initialize level parameters 

75 level_params = dict() 

76 level_params['restol'] = 1e-10 

77 level_params['dt'] = 10.0 

78 

79 # initialize sweeper parameters 

80 sweeper_params = dict() 

81 sweeper_params['quad_type'] = 'LOBATTO' 

82 sweeper_params['num_nodes'] = [5, 3] 

83 sweeper_params['initial_guess'] = 'spread' 

84 

85 # initialize problem parameters for the Penning trap 

86 problem_params = dict() 

87 problem_params['sun_only'] = [False, True] 

88 

89 # initialize step parameters 

90 step_params = dict() 

91 step_params['maxiter'] = 50 

92 

93 # initialize controller parameters 

94 controller_params = dict() 

95 controller_params['hook_class'] = hamiltonian_output # specialized hook class for more statistics and output 

96 controller_params['logger_level'] = 30 

97 

98 # Fill description dictionary for easy hierarchy creation 

99 description = dict() 

100 description['problem_class'] = full_solar_system 

101 description['problem_params'] = problem_params 

102 description['sweeper_class'] = verlet 

103 description['sweeper_params'] = sweeper_params 

104 description['level_params'] = level_params 

105 description['step_params'] = step_params 

106 description['space_transfer_class'] = particles_to_particles 

107 

108 return description, controller_params 

109 

110 

111def run_simulation(prob=None): 

112 """ 

113 Routine to run the simulation of a second order problem 

114 

115 Args: 

116 prob (str): name of the problem 

117 

118 """ 

119 

120 if prob == 'outer_solar_system': 

121 description, controller_params = setup_outer_solar_system() 

122 # set time parameters 

123 t0 = 0.0 

124 Tend = 10000.0 

125 num_procs = 100 

126 maxmeaniter = 6.0 

127 elif prob == 'full_solar_system': 

128 description, controller_params = setup_full_solar_system() 

129 # set time parameters 

130 t0 = 0.0 

131 Tend = 1000.0 

132 num_procs = 100 

133 maxmeaniter = 19.0 

134 else: 

135 raise NotImplementedError('Problem type not implemented, got %s' % prob) 

136 

137 f = open('data/' + prob + '_out.txt', 'w') 

138 out = 'Running ' + prob + ' problem with %s processors...' % num_procs 

139 f.write(out + '\n') 

140 print(out) 

141 

142 # instantiate the controller 

143 controller = controller_nonMPI(num_procs=num_procs, controller_params=controller_params, description=description) 

144 

145 # get initial values on finest level 

146 P = controller.MS[0].levels[0].prob 

147 uinit = P.u_exact(t=t0) 

148 

149 # call main function to get things done... 

150 uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend) 

151 

152 # filter statistics by type (number of iterations) 

153 iter_counts = get_sorted(stats, type='niter', sortby='time') 

154 

155 # compute and print statistics 

156 # for item in iter_counts: 

157 # out = 'Number of iterations for time %4.2f: %2i' % item 

158 # f.write(out) 

159 # print(out) 

160 

161 niters = np.array([item[1] for item in iter_counts]) 

162 out = ' Mean number of iterations: %4.2f' % np.mean(niters) 

163 f.write(out + '\n') 

164 print(out) 

165 out = ' Range of values for number of iterations: %2i ' % np.ptp(niters) 

166 f.write(out + '\n') 

167 print(out) 

168 out = ' Position of max/min number of iterations: %2i -- %2i' % (int(np.argmax(niters)), int(np.argmin(niters))) 

169 f.write(out + '\n') 

170 print(out) 

171 out = ' Std and var for number of iterations: %4.2f -- %4.2f' % (float(np.std(niters)), float(np.var(niters))) 

172 f.write(out + '\n') 

173 print(out) 

174 f.close() 

175 

176 assert np.mean(niters) <= maxmeaniter, 'Mean number of iterations is too high, got %s' % np.mean(niters) 

177 

178 fname = 'data/' + prob + '.dat' 

179 f = open(fname, 'wb') 

180 dill.dump(stats, f) 

181 f.close() 

182 

183 assert os.path.isfile(fname), 'Run for %s did not create stats file' % prob 

184 

185 

186def show_results(prob=None, cwd=''): 

187 """ 

188 Helper function to plot the error of the Hamiltonian 

189 

190 Args: 

191 prob (str): name of the problem 

192 cwd (str): current working directory 

193 """ 

194 

195 # read in the dill data 

196 f = open(cwd + 'data/' + prob + '.dat', 'rb') 

197 stats = dill.load(f) 

198 f.close() 

199 

200 plt_helper.mpl.style.use('classic') 

201 plt_helper.setup_mpl() 

202 

203 # extract error in hamiltonian and prepare for plotting 

204 extract_stats = filter_stats(stats, type='err_hamiltonian') 

205 result = defaultdict(list) 

206 for k, v in extract_stats.items(): 

207 result[k.iter].append((k.time, v)) 

208 for k, _ in result.items(): 

209 result[k] = sorted(result[k], key=lambda x: x[0]) 

210 

211 plt_helper.newfig(textwidth=238.96, scale=0.89) 

212 

213 # Rearrange data for easy plotting 

214 err_ham = 1 

215 for k, v in result.items(): 

216 time = [item[0] for item in v] 

217 ham = [item[1] for item in v] 

218 err_ham = ham[-1] 

219 plt_helper.plt.semilogy(time, ham, '-', lw=1, label='Iter ' + str(k)) 

220 assert err_ham < 2.4e-14, 'Error in the Hamiltonian is too large for %s, got %s' % (prob, err_ham) 

221 

222 plt_helper.plt.xlabel('Time') 

223 plt_helper.plt.ylabel('Error in Hamiltonian') 

224 plt_helper.plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) 

225 

226 fname = 'data/' + prob + '_hamiltonian' 

227 plt_helper.savefig(fname) 

228 

229 assert os.path.isfile(fname + '.pdf'), 'ERROR: plotting did not create PDF file' 

230 # assert os.path.isfile(fname + '.pgf'), 'ERROR: plotting did not create PGF file' 

231 assert os.path.isfile(fname + '.png'), 'ERROR: plotting did not create PNG file' 

232 

233 # extract positions and prepare for plotting 

234 result = get_sorted(stats, type='position', sortby='time') 

235 

236 fig = plt_helper.plt.figure() 

237 ax = fig.add_subplot(111, projection='3d') 

238 

239 # Rearrange data for easy plotting 

240 nparts = len(result[1][1][0]) 

241 ndim = len(result[1][1]) 

242 nsteps = len(result) 

243 pos = np.zeros((nparts, ndim, nsteps)) 

244 

245 for idx, item in enumerate(result): 

246 for n in range(nparts): 

247 for m in range(ndim): 

248 pos[n, m, idx] = item[1][m][n] 

249 

250 for n in range(nparts): 

251 if ndim == 2: 

252 ax.plot(pos[n, 0, :], pos[n, 1, :]) 

253 elif ndim == 3: 

254 ax.plot(pos[n, 0, :], pos[n, 1, :], pos[n, 2, :]) 

255 else: 

256 raise NotImplementedError('Wrong number of dimensions for plotting, got %s' % ndim) 

257 

258 fname = 'data/' + prob + '_positions' 

259 plt_helper.savefig(fname) 

260 

261 assert os.path.isfile(fname + '.pdf'), 'ERROR: plotting did not create PDF file' 

262 # assert os.path.isfile(fname + '.pgf'), 'ERROR: plotting did not create PGF file' 

263 assert os.path.isfile(fname + '.png'), 'ERROR: plotting did not create PNG file' 

264 

265 

266def main(): 

267 prob = 'outer_solar_system' 

268 run_simulation(prob) 

269 show_results(prob) 

270 prob = 'full_solar_system' 

271 run_simulation(prob) 

272 show_results(prob) 

273 

274 

275if __name__ == "__main__": 

276 main()